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Abstract 

Stopping times have been used in number of places in the derivation of law of iterated logarithm for various context. In this 
article, we obtain a law of the iterated logarithm for the tail sums of dyadic martingales using stopping times. 

Keywords: Dyadic Martingales, Tail LIL, Stopping times. 

__________________________________________________________________________________ 

1.  Introduction 

In probability theory, the law of iterated logarithm (LIL) describes the magnitude of the fluctuation of 
a random walk. Its study is directly or indirectly related to dyadic interval and dyadic martingales. A 

dyadic interval of the unit cube [0, 1) is of the form Q�� = � �
�� , ���

�� �for n, j ∈ ℤ. Generally, we write 

Q� to denote a generic interval of length �
�� [3].  If F� denotes the σ-algebra generated by the dyadic 

intervals of the form � �
�� , ���

�� � on �0,1� then the conditional expectation of f��� on F� is given by 

E�f����F�� = �
���� � f����y�dy, x ∈ Q��� . In this consideration, a dyadic martingale is a sequence of 

integrable functions {f�}���� with f�: �0, 1� → ℝ such that for every n, f� is F�- measurable and 
E�f����F�� = f� for all n ≥ 0.�[2] 

For a dyadic martingale, we define the maximal functions as f�∗ = sup
1 ≤ k ≤ m �f�� and   f ∗ =

sup
1 ≤ k < ∞ �f�� and the martingale tail square function is given as S��

�f�x� = �S�� f�x��� =
� d���x�������� , where d� = f��x� − f������x� is the general term of  martingale difference sequence 
{d�}��. [2] 
 
In addition, for a dyadic martingale, we have {x: f ∗�x� < ∞�} = {x: lim f��x� exists�}a.s. [1] 
 
In this context, a theorem on the tail LIL for dyadic martingales gives an important result which is 
stated in the following theorem.[4] 
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Theorem 1 (Tail LIL for Dyadic Martingale) 

Let {f�}���� be a dyadic martingale. Assume that there exists a constant C < ∞ such that ���� ����
��� ����� ≤

C, ∀x, y ∈ I�� for n = 1,2,3 ..., j∈ {0, 1, 2, 3, ..., 2n – 1} where I�� = � �
�� , ���

�� �.

Thenlim),-.
� % 4

|C��D�; C�D�|
J�A�BKC�D� LMN LMN O

P�BKQ�R�
/ SG for a. e. x. 

 
From the assumption, we get 5���� 3 4 for a.e. x. This shows that the sequence ������ converges 
[1]. Thus the tail law of the iterated logarithm gives the rate of convergence of dyadic martingales ��� 
to its limit function �. Moreover, the rate of convergence depends on the tail sums of martingale 
square function.  

As continuation in the tail LIL for dyadic martingales, we obtained a new result which can be 
considered as the corollary of the theorem on tail LIL for dyadic martingales stated above. Our main 
result is as follows. 

Theorem 2 Let��� �!"# be a dyadic martingale. Fix T U �. Define stopping times �2��� �
1=� V�$ � � I��� �WX),W1>))
 � ��� S� Y� Z � S� [��))H)� � I��� 5�6 ���� 3 


\]^ . Then for the sequence of 

stopping times �2���,

<=1),-.
0 % 4

_���� : ��]���_
JS5�6

����� <W` <W` 

A�B

KC�D�

3 √Y

for a.e. x. 

Proof: 

First of all we prove the following estimate for λ> 0, η> 0, 

 |�� � ��� ��$ |���� : �����| U b� 5�6 ���� 3 c)b | / >�. d ;

� eK� (1) 

To prove this we have 

|��$ |���� : �����| U b | / f >�.g :h�

S_|5�6 �|_#
� i

Here, 5�6 ���� 3 cbgives ||5�6 �||#� / j�h�. So, ;

@_A�B C_@k

K / ;

eKlK. So we have, 

|�� � ��� ��$ |���� : �����| U b� 5�6 ���� 3 c)b | / f >�.g :h�

S_|5�6 �|_#
� i

/ f >�. d ;lK
� eKlK�

= >�. d ;

� eK�
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This is the required result (1). 
 

Now, choose λ = ������� ��� ������

�� and  η = �
������� ��� ������

where θ > 1 and ϵ > 0. Then using (1) 

we have, 

��x ∈ �0, 1�: �f�x� − f��x�� > �1 + ϵ��2 log log θ��
θ� , S�� f�x� < 1

θ����� 

≤ 6exp ���������� ��� ������
��� �

= 6 exp �log �2l�log θ��������
�� �

= 6 �2l�log θ��������
��

= �

���������
������

��

= �

��������
������

��
. ��

��
������

��

Let us choose ϵ = �3 θ − 1. Then we have ������
�� = 3. Thus, 

��x ∈ �0, 1�: �f�x� − f��x�� > �1 + ϵ��2 log log θ��
θ� , S�� f�x� < 1

θ����� ≤ 6 � 1
2 log θ�

�
. 1l�

= �
�� (suppose).   (2) 

Now, let �x� = �x log log �
� . Then g�x� is an increasing function. So for �

��� ≤ S��
�f�x�, we have, 

 �2S��
�f�x� log log �

���
����� ≥ �2 �

��� log log θ�� (3) 

Now, using (3), we have,   

��x ∈ �0, 1�: �f�x� − f��x�� > �1 + ����2S��
�f�x� log log 1

S��
�f�x��� 

= �∪������ �x ∈ �0, 1�: �f�x� − f��x�� > �1 + ����2S��
�f�x� log log �

���
����� ,

�
�� ≤ S�� f�x� < �

������ 

≤ �∪������ �x ∈ �0, 1�: �f�x� − f��x�� > �1 + ����2 �
��� log log θ�� , S�� f�x� < �

������ 

= �∪������ �x ∈ �0, 1�: �f�x� − f��x�� > ����
�� �2 log log θ�� , S�� f�x� < �

������ 

≤ � ��x ∈ �0, 1�: �f�x� − f��x�� > ����
�� �2 log log θ�� , S�� f�x� < �

������������  
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≤ � �
��

������  (4) 

We know that, 

� 1
l� ≤ � 1

x� dx
�

�
= �−1

2x���
�

= 1
k�

�

�����
 

So, (4) can be written as, 

��x ∈ �0, 1�: �f�x� − f��x�� > �1 + ����2S��
�f�x� log log 1

S��
�f�x��� ≤ C

k�

This can be done for every n��x�. So summing over all k we have, 

���x ∈ �0, 1�: �f�x� − f��x�� > �1 + ����2S��
�f�x� log log 1

S��
�f�x���

�

���
≤ � C

k�

�

���
 

= C � �
��

���� < ∞.

So, by Borel Cantelli lemma, for a.e. x, there exists M which depends on x such that for every k ≥M, 

�f�x� − f���x�� ≤ �1 + �ϵ��2S��
�f�x� log log 1

S��
�f�x�

But we have choosen ϵ = �3 θ − 1. So, 

�f�x� − f���x�� ≤ �3 θ �2S��
�f�x� log log 1

S��
�f�x�

that is, 

�f�x� − f���x��
�2S��

�f�x� log log �
���

�����

≤ �3 θ

It is noted that as n → ∞, k� → ∞. Now, letting  θ ↓ 1 , we get for a. e. x, 

 

lim�sup
k → ∞

�f�x� − f���x��
�2S��

�f�x� log log �
���

�����

≤ �3
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