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ABSTRACT 
The principal objective of this research article is to explore the relationship between convex sets 

and connected sets. All convex sets are connected but in all cases connected sets are not convex. 

In the Maly theorem,let X be a Banach space, and let f:X → R be a (Fr´echet-)differentiable 

function. Then, for any closed convex subset C of X with nonempty interior,the image Df(C) of C 

by the differential Df of f is a connected subset of X∗ , where X∗ stands for  thetopological dual 

space of X.The result does not hold true if C has an empty interior. There are counterexamples 

even with functions f of two variables. This article concludes that convexity cannot be replaced 

with the connectedness of C.  

KEYWORDS 
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INTRODUCTION 
We have convexity as a local property of contour curvature: the local sign of curvature. A 

different use of the term refers, instead, to the global degree of convexity of complex 2-D shapes. 

The convex hull or envelope of a set of points or vertices of a polygon is defined as the minimal 

convex set containing all those points. However, very different shapes can share the same convex 

hull. Using the convex hull, we can define a global measure of shape convexity as the proportion 

of the area of a polygon over the area of its convex hull (Preparata and Shamos, 1985). More 

sophisticated measures of global convexity have been put forward, for instance, by Pao, Geiger, 

and Rubin (1999) and by Rosin (2000). So far, these measures have not been fully validated in 

terms of their role in human perception. It can clearly be useful to have a formula that assigns a 

single value of convexity to any complex 2-D shape. In image analysis, this type of measure is 

known as a shape factor: a value that is affected by an object’s shape but is independent of its 

dimensions. An example that is closely related to that of convexity is that of compactness, 

defined as the square of the perimeter over the area or, alternatively, as the area of a shape over 

the area of a circle having the same perimeter. Another well-known shape factor is the aspect 

ratio. 

In the previous paragraph, we contrasted a local meaning of convexity (the sign of 

curvature at one location along a contour) and a global meaning of convexity. An intermediate 

https://link.springer.com/article/10.3758/s13423-012-0347-2#CR97
https://link.springer.com/article/10.3758/s13423-012-0347-2#CR91
https://link.springer.com/article/10.3758/s13423-012-0347-2#CR100
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definition is also possible. For example, Fowlkes, Martin, and Malik (2007) computed convexity 

within a region from the fraction of point pairs for which a straight line connecting the two 

points lies completely within the region. This value can be computed for both sides of the 

contour, and convexity is then given by the log ratio of the two values. Changing the size of the 

region would make this measure more local or more global. 

A figure is called convex if it contains, along with any pair of its points  x, y, also the 

entire segment [x, y] joining  the points. This is exactly the definition of a convex set in the 

multidimensional case; all we need is to say what does it mean “the segment [x, y] joining the 

points x, y ∈Rn ”(Lecture1https://ljk.imag.fr/membres/Anatoli.Iouditski/cours 

/convex/chapitre1.pdf). A subset M of Rn is called convex, if it contains, along with any pair of 

its points x, y, also the entire segment [x, y]: . 

 In geometry, a convex set or a convex region is a subset of a Euclidean space, or more 

generally an affine space over the reals, that intersects every line into a line segment (Morris and 

Stark, 2017 and Kjeldsen, 2010).Equivalently, this is a subset that is closed under convex 

combinations ( Bachem and Kern, 2017). For example, a solid cube is a convex set, but anything 

that is hollow or has an indent, for example, a crescent shape, is not convex. 

The boundary of a convex set is always a convex curve. The intersection of all the 

convex sets that contain a given subset A of Euclidean space is called the convex hull of A. It is 

the smallest convex set containing A. 

A convex function is a real-valued function defined on an interval with the property that 

its epigraph (the set of points on or above the graph of the function) is a convex set. Convex 

minimization is a subfield of optimization that studies the problem of minimizing convex 

functions over convex sets. The branch of mathematics in which we study the properties of 

convex sets and convex functions is called convex analysis. 

 

PRELIMINARIES 

Segment:Let x, y be two points in Rn. The set 

  

is called a segment with the endpoints x, y. 

Convex Set: A subset M of Rn is called convex, if it contains, along with any pair of its points x, 

y,also the entire segment [x, y]: 

   

Note that by this definition an empty set is convex (by convention, or better to say, by 

the exact sense of the definition: for the empty set, we cannot present a counterexample to 

show that it is not convex). 

The simplest examples of nonempty convex sets are singletons – points – and the entire 

space Rn. A much more interesting example is as follows: 

Example: The solution set of an arbitrary (possibly, infinite) system 

 
of linear inequalities with n unknowns x – the set 

     

is convex. 

https://link.springer.com/article/10.3758/s13423-012-0347-2#CR44
https://ljk.imag.fr/membres/Anatoli.Iouditski/cours%20/convex/chapitre1.pdf).%20A%20subset%20M%20of%20Rn%20is%20called%20convex,%20if%20it%20contains,%20along%20with%20any%20pair%20of%20its%20points%20x,%20y,%20also%20the%20entire%20segment%20%5bx,%20y%5d:.
https://ljk.imag.fr/membres/Anatoli.Iouditski/cours%20/convex/chapitre1.pdf).%20A%20subset%20M%20of%20Rn%20is%20called%20convex,%20if%20it%20contains,%20along%20with%20any%20pair%20of%20its%20points%20x,%20y,%20also%20the%20entire%20segment%20%5bx,%20y%5d:.
https://ljk.imag.fr/membres/Anatoli.Iouditski/cours%20/convex/chapitre1.pdf).%20A%20subset%20M%20of%20Rn%20is%20called%20convex,%20if%20it%20contains,%20along%20with%20any%20pair%20of%20its%20points%20x,%20y,%20also%20the%20entire%20segment%20%5bx,%20y%5d:.
https://ljk.imag.fr/membres/Anatoli.Iouditski/cours%20/convex/chapitre1.pdf).%20A%20subset%20M%20of%20Rn%20is%20called%20convex,%20if%20it%20contains,%20along%20with%20any%20pair%20of%20its%20points%20x,%20y,%20also%20the%20entire%20segment%20%5bx,%20y%5d:.
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In particular, the solution set of a finite system 

     Ax ≤ b 

of m inequalities with n variables (A is m × n matrix) is convex; a set of this latter type is 

called polyhedral. 

Indeed, let x, y be two solutions to the system; we should prove that any point  

 with  also is a solution to the system. This is evident, since for every  

we have 

     

     

whence, multiplying the inequalities by nonnegative reals λ and 1− λ and taking sum of the 

results, 

 

    

and what is in the left hand side is exactly . 

Remark 

Note that any set given by Example 2.2.1 is not only convex, but also closed. 

 Any plane in Rn(in particular, any linear subspace) is the set of all solutions to some  

system of linear equations. Now, a system of linear equations is equivalent to a system of linear       

inequalities (we can equivalently represent a linear equality by a pair of opposite linear                   

inequalities). It follows that a plane is a particular case of a polyhedral set and is therefore 

convex. Of course, we could obtain this conclusion directly: convexity of a set means that it is     

closed with respect to taking certain restricted set of linear combinations of its members namely, 

the pair combinations with nonnegative coefficients of unit sum. We can show that any plane or 

an affine set is closed with respect to taking linear combinations not compulsory positive of its 

elements with unit sum. 

 

INNER DESCRIPTION OF CONVEX SETS: CONVEX 

COMBINATIONS AND CONVEX HULL 
Definition: A convex combination of vectors    is their linear combination 

     

 

 

with nonnegative coefficients with unit sum: 

    

We have the following simple statement: 

Proposition : A set M in Rn is convex if and only if it is closed with respect to taking 

all convex combinations of its elements, i.e., if and only if any convex combination of vectors 

from M again is a vector from M. 

Proof. 

Necessarypart: Assume that M contains all convex combinations of the elements of M. Then, 
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with any two points and any , M contains also the vector , since 

it is a convex combination of x and y; thus, M is convex. 

Sufficient part: Assume that M is convex; we should prove that then M contains any 

convex combination. 

   (*)  

of vectors . The proof is given by induction in m. The case of m = 1 is evident (since the 

only 1-term convex combinations are of the form is ). Assume that we already 

know that any convex combination of m − 1 vectors, m ≥ 2, from M is again a vector from M, 

and let us prove that this statement remains valid also for all convex combinations of m vectors 

from M. Let (*) be such a combination. We can assume that 1 >λm, since otherwise there is 

nothing to prove (indeed, if λm= 1, then the remaining λi’s should be zero, since all λ’s are 

nonnegative with the unit sum, and we have y = ym∈ M). 

Assumingλm<1, we can write 

   . 

The value in the brackets is a convex combination of m−1 points from M and therefore, by the 

inductive hypothesis, this is a point, let it be called z, from M; we have 

     

with z and  , and  by definition of a convex set M. 

Convex hull 

Proposition [Convexity of intersections] Let  be an arbitrary family of convex 

subsets of Rn. Then the intersection 

   M = ∩αMα 

is convex. 

Indeed, if the endpoints of a segment [x, y] belong to M, then they belong also to every Mα; 

due to the convexity of Mα, the segment [x, y] itself belongs to every Mα, and, consequently, to 

their intersection, i.e., to M. 

An immediate consequence of this Proposition is as follows: 

Corollary [Convex hull] 

Let M be a nonempty subset in Rn. Then among all convex sets containing M (these setsexist, 

e.g., Rn itself) there exists the smallest one, namely, the intersection of all convex setscontaining 

M.This set is called the convex hull of M. 

Proposition  [Convex hull via convex combinations] For a nonempty M ⊂Rn: 

Conv(M) = {the set of all convex combinations of vectors from M }. 

Proof.  Any convex set containing M (in particular, Conv (M)) contains all convex combinations 

of vectors from M. What remains to prove is that Conv (M) does not contain anything else. To 

this end it suffices to prove that the set of all     convex combinations of vectors from M, let this 

set be called M ∗, itself is convex (given this fact and taking into account that Conv (M) is the 

smallest convex set containing M, we achieve our goal – the inclusion Conv (M) ⊂ M ∗). To 

prove that M ∗is convex is the same as to prove that any convex combination νx+ (1 − ν)yof any 

two points ,  of M ∗– two convex combinations of vectors  xi∈ M is 
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again a convex combination of vectors from M. This is evident: 

, , 

and the coefficients clearly are nonnegative with unit sum. 

MORE EXAMPLES OF CONVEX SETS: POLYTOPE AND 

CONE 

A polytope is, by definition, the convex hull of a finite nonempty set in Rn, i.e., the set 

of the form 

. 

An important case of a polytope is a simplex - the convex hull of n + 1 affinely independent 

points v1, ..., vn+1 from Rn: 

 ; 

the points v1, ..., vn+1 are called vertices of the simplex.  

A cone.A nonempty subset M of Rnis called conic, if it contains, along with every point 

 , the entire ray   spanned by the point: 

. 

A convex conic set is called a cone. 

Proposition 4.2.1.A nonempty subset M of Rn is a cone if and only if it possesses the 

following pair of properties: 

• is conic: ; 

• contains sums of its elements: . 

As an immediate consequence, we get that a cone is closed with respect to taking linear 

combinations with nonnegative coefficients of the elements, and vice versa – a nonempty set 

closed with respect to taking these combinations is a cone. 

Example 4.2.2 The solution set of an arbitrary (possibly, infinite) system 

 

 
of homogeneous linear inequalities with n unknowns x – the set 

 
is a cone. 

In particular, the solution set to a homogeneous finite system of m homogeneous linear 

inequalities 

     Ax ≤ 0 

(A is m × n matrix) is a cone; a cone of this latter type is called polyhedral. 

 Cones form a very important family of convex sets, and one can develop theory of cones 

absolutely similar (and in a sense, equivalent) to that one of all convex sets.E.g., introducing the 

notion of conic combinationof vectors x1, ..., xkas a linear combination of the vectors with 

nonnegative coefficients, you can easily prove the following statements completely similar to 

those for general convex sets, with conic combination playing the role of convex one: 

• A set is a cone if and only if it is nonempty and is closed with respect to taking all conic 

combinations of its elements; 
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• Intersection of any family of cones is again a cone; in particular, for any nonempty set M 

⊂Rnthere exists the smallest cone containing M – its conic hull Cone (M), and this conic hull is 

comprised of all conic combinations of vectors from M. 

In particular, the conic hull of a nonempty finite set of vectors in Rn 

is the cone 

   . 

A fundamental fact (cf. the above story about polytopes) is that this is the generic (inner) 

description of a polyhedral cone – of a set given by (outer description) finitely many 

homogeneous linear inequalities. 

 

ALGEBRAIC PROPERTIES OF CONVEX SETS 

The following statement is an immediate consequence of the definition of a convex set. 

PropositionThe following operations preserve convexity of sets: 

• Arithmetic summation and multiplication by reals: if  ,…,  are convex sets in Rn 

and  are arbitrary reals, then the set  

 

 
is convex.       

   

• Taking the image under affine mapping: if M ⊂Rn is convex and  

is an affine mapping from Rn into Rm (A is m×n matrix, b is m-dimensional vector), 

then the set 

 
is a convex set in Rm; 

• Taking the inverse image under affine mapping: if M ⊂Rn is convex and y   

is an affine mapping from Rm to Rn (A is n × m matrix, b is n-dimensional vector),then the set 

 
is a convex set inRm. 

 

TOPOLOGICAL PROPERTIES OF CONVEX SETS 

Convex sets and closely related objects - convex functions - play the central role in Optimization. 

To play this role properly, the convexity alone is insufficient; we need convexity plus closedness. 

From the analysis we already know about the most basic topology-related notions – convergence 

of sequences of vectors, closed and open sets in Rn. Here are three more notions we will use: 

The closure. It is clear from definition of a closed set that the intersection of any familyof closed 

sets in Rnis also closed. From this fact it, as always, follows that for any subset M of Rn there 

exists the smallest closed set containing M; this set is called the closure ofMand is denoted cl M. 

In Analysis they prove the following inner description of the closure of a set in a metric space 
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(and, in particular, in Rn): 

The closure of a set M ⊂Rn is exactly the set comprised of the limits of all converging 

sequences of elements of M. 

The interior.Let . We say that a point x ∈ M is an interior for M, if some 

neighborhood of the point is contained in M, i.e., there exists centered at x ball of positive 

radius which belongs to M: 

. 

The set of all interior points of M is called the interior of M [notation: intM]. 

E.g., 

• The interior of an open set is the set itself; 

• The interior of the closed ball  is the open ball   

• The interior of a polyhedral set  with matrix A not containing zero rows 

is the set  

Relative interior:  Let M ⊂ Rn. We say that a point x ∈ M is relative interior for M, if M 

contains the intersection of a small enough ball centered at x with Aff (M): ∃r > 0 Br(x) ∩ Aff 

(M) ≡ {y | y ∈Aff (M), |y − x| ≤ r} ⊂ M. The set of all relative interior points of M is called its 

relative interior [notation: ri M 

CONNECTED SETS :( https://en.wikibooks.org/wiki/Real_Analysis/Connected_Sets) 

/ A set A in   is connected if it is not a subset of the disjoint union of two open sets, both of 

which it intersects. 

Examples: The set [0,2] cannot be covered by two open, disjoint intervals; for example, the open 

sets (-1,1) and (1,2) do not cover (0,2) because the point x=1 is not in their union. Thus (0,2) is 

connected. 

However, the set {0,2} can be covered by the union of (-1,1) and (1,3), so {0,2} is not connected. 

Definition: A set is path-connected if any two points can be connected with a path without 

exiting the set. 

A useful example is  . Any two points a and b can be connected by simply drawing a 

path that goes around the origin instead of right through it; thus this set is path-connected. 

However,  is not path-connected, because for a = -3 and b =3, there is no path to connect a 

and b without going through  x = 0. 

As should be obvious at this point, in the real line regular connectedness and path-connectedness 

are equivalent; however, this does not hold true for  with n >1 . When this does not hold, 

path-connectivity implies connectivity; that is, every path-connected set is connected. 

Definition: A set A is simply-connected if any loop completely contained in A can be shrunk 

down to a point without leaving A. 

An example of a Simply-Connected set is any open ball 

in 

https://en.wikibooks.org/wiki/Real_Analysis/Connected_Sets
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. However, the previous path-connected set  is not simply connected, because for any 

loop p around the origin, if we shrink p down to a single point we have to leave the set at (0,0). 

             

CONNECTED SPACE  
Definition: A topological space X is said to be disconnected if it is the union of two disjoint 

non-empty open sets. Otherwise, X is said to be connected. A subset of a topological space is 

said to be connected if it is connected under its subspace topology. Some authors exclude 

the empty set (with its unique topology) as a connected space. 

A space in which all components are one-point sets is called totally disconnected Related to this 

property, a space X is called totally separated if, for any two distinct elements x and y of X, there 

exist disjoint open sets U containing x and V containing y such that X is the union of U  and V. 

Clearly, any totally separated space is totally disconnected, but the converse does not hold.  

Path Connectedness 
Definition: A path-connected space is a stronger notion of connectedness, requiring the 

structure of a path. A path from a point x to a point y in a topological space X is a continuous 

function ƒ from the unit interval [0,1] to X with ƒ(0) = x and ƒ(1) = y. A path-component of X is 

an equivalence class of X under the equivalence relation which makes x equivalent to y if there is 

a path from x to y. The space X is said to be path-connected (or pathwise connected or 0-

connected) if there is exactly one path-component, i.e. if there is a path joining any two points 

in X. Again, many authors exclude the empty space. 

Every path-connected space is connected. But the converse is not always true: examples 

of connected spaces that are not path-connected include the extended long line L* and         

the topologist's sine curve. 

Subsets of the real line R are connected if and only if they are path-connected; these 

subsets are the intervals of R. Also, open subsets of Rn or Cn are connected if and only if they are 

path-connected. Additionally, connectedness and path-connectedness are the same for finite 

topological spaces. 

Arc connectedness  
A space X is said to be arc-connected or arcwise connected if any two distinct points can be  

joined by an arc, that is a path ƒ which is a homeomorphism between the unit interval [0, 1] and 

its image ƒ([0, 1]). It can be shown any Hausdorff space which is path-connected is also arc-

connected.  

An example of a space which is path-connected but not arc-connected is provided by 

adding a second copy 0' of 0 to the nonnegative real numbers [0, ∞). One endows this set with 

a partial order by specifying that 0'<a for any positive number a, but leaving 0 and 0' 

incomparable. One then endows this set with the order topology, that is, one takes the open 

intervals (a, b) = {x | a < x < b} and the half-open intervals [0, a) = {x | 0 ≤ x < a}, [0', a) = {x | 

0' ≤ x < a} as a basefor the topology. The resulting space is a T1 space but not a Hausdorff space. 

Clearly 0 and 0' can be connected by a path but not by an arc in this space. 

 

https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/Subset
https://en.wikipedia.org/wiki/Empty_set
https://en.wikipedia.org/wiki/Homeomorphism
https://en.wikipedia.org/wiki/Hausdorff_space
https://en.wikipedia.org/wiki/Partially_ordered_set
https://en.wikipedia.org/wiki/Base_(topology)
https://en.wikipedia.org/wiki/T1_space
https://en.wikipedia.org/wiki/Hausdorff_space
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Locally connectedness 
A topological space is said to be locally connected at a point x if every neighborhood 

of x contains a connected open neighborhood. It is locally connected if it has a base of connected 

sets. It can be shown that a space X is locally connected if and only if every component of every 

open set of X is open. 

Similarly, a topological space is said to be locally path-connected if it has a base of 

path-connected sets. An open subset of a locally path-connected space is connected if and only if 

it is path-connected. This generalizes the earlier statement about Rn and Cn, each of which is 

locally path-connected. More generally, any topological manifold is locally path-connected. 

Locally connected does not imply connected, nor does locally path-connected imply path 

connected. A simple example of a locally connected (and locally path-connected) space that is 

not connected (or path-connected) is the union of two separated intervals in R, such as (0,1) and 

(2,3). 

A classical example of a connected space that is not locally connected is the socalled  

topologist's sine curve, defined as  , with the Euclidean 

topology induced by inclusion in R2. 

ANALYSIS OF THEOREMS 

Theorem 1: Every convex set in Rk is connected.( 

Proof: We prove this by contradiction in this. So we suppose the set E is convex and yet not 

connected, and so equals the union of two disjoint, non-empty open sets A and B. Since E is 

convex, for any x∈A, y∈B, there exists a mapping f such that 

f(λ)=λx+(1−λ)y 

for all λ∈(0,1). This mapping is continuous and one-to-one, hence its image, which we call 

call P for "path", is both connected and open since (0,1) is both connected and open. Since  A 

and B are disjoint, it follows P∩A and P∩B are also disjoint. P∩A and P∩B are non-empty 

because x and y are taken from open sets and so therefore have a "buffer zone" of points around 

them which P will have to intersect. They are also open sets since P is open and so are A and B. 

Hence P∩A and P∩B are two disjoint, non-empty open sets whose union is P. Therefore P must 

be disconnected which contradicts  that it is connected since it is a continuous image of a 

connected set. 

 

Theorem 2: Every convex set is connected, but the converse is not true. Example: The ring 

region  in the plane is connected but not convex. 

Proof: The points A(2, 0) and B(-2, 0) belong to K, but the line segment AB doesn't belong to K, 

hence non-convex region. K is pathwise connected and connected since for any points A and 

B.K can be joined with a path.  

 

 

Theorem 3: A convex connected set is simply connected but not vice versa  

https://en.wikipedia.org/wiki/Locally_connected_space
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Proof: Convex set is simply connected (even contractible). But what makes we think that the 

converse holds? For example let V be a real normed vector space and for any  consider 

  

i.e. the line segment between v and w. With that the definition of convexity is quite 

simple:  is convex iff  for any  

 

Theorem 4: Let Abe a star convex subset of a vector  space V over R or C. 

 

Then A is path-connected. 

Proof 

Let . 

Let a ∈  A be a star center of A. 

By definition of star convex set, it follows that for all t ∈ [0..1] we 

have  

Define two paths  by  and  

As , and (1−t)∈ [0..1](1−t)∈ [0..1], it follows that . 

Note that , ,  and   . 

Define  as the concatenation . 

Then γ is a path in A joining   and  , so A is path-connected. 

Theorem 5: Star Convex Set is Path-Connected 

Theorem 6: Hollow bodies (Sphere, torus) are connected but nut convex. 

CONCLUSIONS 
From theorems and literatures mentioned above we can say that all convex sets are connected but 

all connected sets are not convex. So, convexity cannot be replaced with the connectedness of C.   
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