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ABSTRACT

The most general linear operator to transform from new sequence space into another sequence space is actually
given by an infinite matrix. In the present paper we represent some sequence spaces and their matrix
transformations and summability.
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INTRODUCTION

Concepts of summability:

Let A =(aw ) on, k=1 be an infinite matrix, X = (Xx ) o, =1 be a sequence, e =1, 1,1 - - - ), A,X
=) req ApnkXk and Ax = A =(a,X ) oo, k=1 be the sequence ofthe A transforms of x. There are three
concepts of summability.

* Ordinary summability : x is summable A if

limn—oo A, x = £ for some € € |C

» strong summability : x is strongly summable A with index p > 0 if
limn—oA, (X — € - ef) = limn—ow) 7 ank [xk — £|p = 0

ank|xk — £|° = 0 for some ¢ € |C

« absolute summability : x is absolutely summable A with index p > 0 if
Yy [Apx — Ay — 1xXlp < .

An example

Example 1.1 Let the matrix A be given by a,;, = 1/nfor 1 <k <nand
Anr =0fork>n(n=1,2,...). Then the A transforms of the sequence
X are the arithmetic means of the terms of x, that is,

on =1/n);°-1 x; and A defines the Ces'aro method C1 of order 1.

« Every convergent sequence is summable C1 and the limit is preserved
« the divergent sequence ((—1))«: is summable C1 to 0

« strong summability of index 1 implies ordinary summability to the same
limit; the converse is not true, in general

» absolute summability with index 1 implies ordinary summability

A sequence space is a linear space of functions defined on the set of counting numbers. Thus the
sequence space is set of scalar sequence (real or complex) which is closed under coordinate wise
addition and scalar multiplication. If it is closed under co-ordinate wise multiplication as well, then it
is called the sequence algebra. We are concerned mainly on the problem of identification, inclusion
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problem and matrix mapping problems. The study of sequence spaces is thus a special case of the
more general study of function space, which is in turn a branch of functional analysis.

Here, we begin some definitions and notations:

Normed Space:

Normed Space is a pair (X, ||. || ) of a linear space X and norm .|| on X.
Banach Space:

A Banach Space (X, || ||) is a complete normed space where completeness means that every sequence
(xn) In X with || x,,, — x,,]|—0 as m, n—oo, there exists x € X

such that ||x,,-x|| —0 as n—o0.
Paranorm:

A paranorm ‘g’ defined on a linear space X, is a function: X— R having the following usual
properties:

(i) 9(@)= o, where @ is the o element in X.
(ii) g(x) = g(-x), for all x € X.

(iii) g(x +y) < g(x) +g(y) for all x, y € X.

(iv) The scalar multiplication is continuous that is 4, = A (n— o0) and g(x,-X) = 0 as n—
0,for \yAeCand x,x € X,g(Apx,-AX) = 0asn — oo,

(V)g(x) =0 = x = o.
A paranormed space:
A paranormed space is a linear space X together with a paranorm g.
The space L.(p) :
Let {p,} be abounded sequence of strictly positive real numbers. We define
loo ()= {x= {0} : *}7 | xp|Pk<o0}
Forx,yele,(p) ,we define
dx, y)= P | x =y [PEM
Where M = max (1, sup px)- Ll (p) is a metric space with metric d.

If p, =p for all k, then we write [, for [, (p) . Here [, is the set of all bounded sequences x =
{x.} of real or complex numbers and isa metric space with the natural metric

dex, y) = *P e — il
Spaces c(p) and ¢, (p) :
With {p;}, we define
c(p) ={x = {xx} : |xx — l|P*—0 as k—oo for some [ & C} and
co(p) ={x = {xy } : [x4 |[Pk—0 as k—oo }
c(p) and co(p) are the metric spaces with metric
d(x,y) = 2P| xx — yi |P™, where M = max (1, suppy,).

The spacesc and c,:
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If p;, =p for all k, then we write ¢ and ¢, for c(p) and co(p) respectively. ¢ and c, represent the sets of
all convergent sequences and null sequences respectively.

Note that ¢ and cyare metric spaces with the metric

dix.y) = 5P 1 xi- yel.

In c if we define p(x, y) = | lim(x,, —=y,,) |,

then although p(x, y) =0, this does not always imply that x = y.

For example if we take x;, =1/k and y ;=0 for all k, observe that the other two axioms of a metric are
satisfied by pThus p is not a metric on c, but is a semi metric.

Duals:

If X is a sequence space, We define

xB = {a=(ay) : Y., axx) is convergent for each x & X}.

Theorem (1):

Let p,, > o for every k, then

[Slo (@)1 =Nzl @ = (@ Ty @[Sk NYPm 1} convergesEi, NUpy Ryl < oo,
N > 1,where R, =¥, a, (weassumethatyk .z, =o (k> 1)).

Proof: Suppose that x & SLq, (p), we choose N > 1, so that suppya x, Pk < N,we write

k=1 WX = Xgemq RieBxye — Rypyq Ygeq Axge (m=1,2,3,...) 1)

Since Y= 1|Rkl| 1Ax,| < Yi=1lRk| N1/P, < oo,it follows that )y, RyAx; is absolutely
convergent. By corollary 2 in [6], the convergence of Y5, a,( XX _, N1/Pm ) implies that

lim,, 0 Rm+1zlfn_1N1/Pm = 0. Hence, it follows from (1) that).;, a;x; is convergent for each x

£ Sl (p). This yields a & (Sl ()"

Conversely, suppose that ae (Slo, (p))ﬁ , then by definition, Y52, a,x; is convergent for each x
€ SL (p).

Sincee=(1,1,1,.) € Sl,, (p)andx=[ YK _, N1/Pm] e Sl (p) so,

Y1y and Yo a,[ X0 -4 N1/Pm ] are respectively convergent. By using corollary 2 in [20], we
find that

lime, Ryps1 2om=1 N1/Pm=o.
Thus, we get from (1) that the series Y-, R Ax; converges for each xe Sl (p) .

Since x &Sl (p) if and only if Ax &Sl (p). This implies that R = {Ry, £( Sl (p))P. It
now follows from a theorem 2 in [10] that ).z- ;| Ry | N1/pk converges for all N > 1.

This completes the proof of the theorem.
Theorem (2):
Letp, > o, for every k,then

[Sco(p) 1P = SMy(p), where SM,(p) = Unsi{a = { ai} + Yiey ax [ Xw=1 N-1/Pm ] converges
and Y521 |Rx| N™1/Pk < N > 1},

Proof:
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Leta e SM,(p) and x € Sco(p). We choose an integer N> 1 such that |Ax;|pk < N-1.
We have Y 7uq QrXr = Ype1 RkDXy - Rpy1 2peq DXy ; (m=1,2,3,...).
Since Yo |ReAx,| < T |Rkl|Ax, | < Y5 1|R| N™Y/Pk < oo, it follows that,
Y= RiAxy is convergent absolutely. The convergence of
Y% a, (XK _ N-1/Pm) implies that
Rpi1 2=y N-1/Pi =0 (1) (m— o0).Hence )5, a,x; converges for each x € SM, (p). That is,

ae [Sc,(p)]”.

Conversely, let a [Sc,(p)]? , then

for any x & SM,(p), Y axXy converges. Since the sequence x={}.X _, N-1/Pm} by choosing
€ > % (N = 2,3, ...)e Sc,(p) it follows that Y}, ay

( an=1 N-1/Pm) converges [Because anﬂ N -1/pm & Sco(p) ]

To show that Y50, |Rx| N™¥/Pk < oo, N > 1, let us assume that Y5 ,|R;| NPk < 00, N >
1, then from Theorem 6 , it follows that R & Mo(p) = [ ¢, (p)]?, then there exists a sequence x =
{1/k}, k=1 € ¢, (p) such that

Y= Ry 1/k does not converse. Although, if we define

1 %) o) 1 [eo)
y={yk } by yk =Xno1-, then, y e Sco(p), but X aryi = Xilq aid Ti=1; } = Zie1 Re
1/k.
Hence Y.z~ ax Yy does not converge for y € Sco(p), a contradiction is due to the fact that
ae[Sc,(p)]?.so
Yo i|RINTV/Pk < oo, N > 1.
This completes the proof of the theorem.
MATRIX MAPS:
Let X and Y be any two sequence spaces. Let A= (ay ) n ;":1
(1< n, k < o0) be an infinite matrix of scalar entries.
Ax = (An (x)) n‘:l €Y, where A, (xX) = X121 QnrXy is a convergent sequence for eachn  (n =
1, 2, 3,...). We say that A defines a matrix map from X into Y and we write A € (X,Y). By (X, Y),

we mean the class of matrices A such that A & (X,Y).The main aim is to characterize the spaces
(Sls(p), c5). We shall first establish the following simple lemma 1.

Lemma (1):

Let X and Y be two sequence spaces, and letAY = {y ={yx }: Ay = (yx — Vk—-1) € Y, Y,= 0}, then
Ae(X,Y)ifandonly AA = (ap ) — An-1 & )nl;le =(bpi )n,120=1 =B ¢ (X, Y).With lemmal,. (i,
ii ) in [10] or, Theorem 3 in [10] or, Theorem 5b (i) and Theorem?7 in [24], a characterization of the
classes (L(p), Sly) or (ln(p), Slw) or ((L(p), Slw(q)) (qely) immediately follows

In [6] the authors have characterized the spaces (Sl (p), Lo ) iff the matrix A satisfy following the
conditions:

Theorem3:
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Let p, > o forevery kthen, A € (Sl (p), lo ) if

)°37 | 2zt Gnk(En=g NYPm)]| < o0, N > 1.

(i) %P [Xey NPk B0y any| <00, N > 1.

Proof: We first prove that these conditions are necessary.
Suppose that A€ (5le(p).le). Since x= (xi) = (XK, N1/Pm)

belongs to sl (p), the condition (i )holds. In order to see that (ii) is necessary we assume that
for N>1,

SUPAIE NP [ o ] =00
Let the matrix B be defined by
B = (bue) = (Betg Ay ).
Then it follows from Theorem 1.12.8 that B € (sl (p).l). Hence, there is a sequence
X € Sl (p) such that
supy |xx [Pk =1and };7-1 burxp # 0(1).

We now define the sequence y = (yi) by

Vi =2k 1%, (KeN),

Yo = 0.
Theny € sl (p) and Xy AngVix = Xke1 burXe # 0(1).
This contradicts that A€ (sl (p),lw). Thus, (ii) is necessary.
We now prove the sufficiency part of the theorem.
Suppose that (i) and (ii) of the theorem hold. Then A,, € (sl (p))? foreachn € N.

Hence A4,,(x) = Y.x=1 ani Xy converges for each n € N and for each x € sl (p). Following the
argument used in lemma 1, we find that if X € sl (p) such that supy, | Ax;|P* <N, then

1
ISy @il < Tieg NPk S04 | ;
1

< SuPn[Z?ﬂ Nﬁ IZ;;O:k anvl ];

< 0o,
This proves that AX € [,. Hence, the theorem is proved.
Theorem (4):
Let py - 0, for every k, then A € (Sl (p), ¢) if and only if

(R e (lo(p),c)where R= (1 k) = [ Xpek Anw | (L k=1,2,3,..)).

1
(i) A [XX NP lec (nk=1,2,3,..) forall integers, N > 1.
(i) limy, o ap ax  (k=1,2,3,..).

Proof: Let us first prove the sufficiency condition. For consider any x € Sl (p), we choose N >
1, so that suppx |Axy |°« < N.we write,
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Zﬁ:l Ay Xy = Z;anl an'kAxk _Theg, mZ}?:l Axk (m =1,2,3,.. ) (2)

1
By condition (ii) Xx=1 an k[ Yk | N7 ] is convergent for each (n = 1, 2, 3,...).Hence, by corollary 2
in [20] it follows that

1
iMoo Tnerm 2y NPi = 0. By condition (i), R & (lo(p),c), and since x
€Sl (p) if and only if Ax €l (p). Hence, by corollary [2] in [20] it follows that
Y= 1|Tni [NY/Px is uniformly convergent in n and lim,, e 7 exists for each (k=1,2,3,...)

since Yoy [Tk | 1A%k | < Ziei|rnx| NY/Pk, from (2) we find that X, @, Xy is absolutely and
uniformly convergent in n. Finally, we have

lim,, o Xo1 QX = Xk=1 AxXk- This proves the sufficiency condition.
The necessities of (iii) and (ii) are respectively obtained by takingx =e = (1, 1, 1,...) € Slo,(p) and
1

x=[XK NP] (k=1,2,3,..), i&Sl,(p).Now consider the necessity of (i).If it is not true, then
there exists X = (x,,) € lo,(p) with supp|x,|p, = 1 such that  [Y 7, ,x,, |* €& c. Alhough if we
define a sequence y = (yy) by

Yo = im1X; (v=1,2,3..), theny €Slo(p) but [Xo=1 AnvYy = Dpet TnpXy] € c. This
contradicts the fact that A € (Sl (p), ¢ ) and therefore (i) must hold.

Before characterizing the class (Sl (p), ¢s ), we add one more notation, for any

n> 1, we write

tn (AX) = Xf_1 A; (X)= Xz buyxy, [x&Sle(p)], whereB = (b)) = [ Xiz1 @ik ]
(n=1,2,3,...).This complete the proof of the theorem.

Theorem (5):

Let py - 0, for every k, then A € (Sl (p), ¢, ) if and only if

()C & (Sloo(P), €5) Where C = (Co ) = {1 [Nk @, 1} (0 k=1,2,3,...).

(i) B, [ XK, N%] ecs (n,k=1,2,3,...) for all integers, N > 1.
(i) limy 0o by =limy e Xinqair = B (k=1,2,3,..0).
Proof:

This theorem follows immediately from theorem (4);

Let us first prove the sufficiency condition. For consider any x € Sl (p), we choose N > 1, so that
suppk |Ax; |pk < N.we write,

ket bnrXp = Xkeq Cnebxy _ Cp, m+1 Y08 Axg,  (m=1,2,3,...) and the convergence of
Y1 by [Xm, NY/Pi]  implies that

im0 Cpmy 1X7E, NY/Pi =0,
Characterization of (I(p), Sc,(q)) , qelo, follows from Theorem 5 (ii) [28] with lemma 1.

This completes the proof of the theorem.
CONCLUSION
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The results obtained in this research paper are very closely linked with the summability theory
and matrix transformations. So the practical applications of this research paper have the same
applicability applications as those of summability theory and matrix transformation between
sequence spaces.
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