Growth and chlorophyll fluorescence under salinity stress in sugar beet (Beta vulgaris L.)
DOI:
https://doi.org/10.3126/ije.v3i1.9937Keywords:
Growth, Chlorophyll fluorescence, Salinity stress, Sugar Beet (Beta vulgaris L.)Abstract
This study was carried out in the General Commission for Scientific Agricultural Research (GCSAR), Syria, at Der EzZour Agricultural Research Center, from 2008-2010, to examine the effect of salt conditions on some growth attributes and chlorophyll fluorescence in 10 Sugar Beet (Beta vulgaris L.) genotypes under salinity stress. Sugar beet plants were irrigated with saline water, having electrical conductivity ranged from 8.6-10 dS.m-1during first year and 8.4-10.4 dS.m-1 during second year. A randomized completely block design with three replicates was used. The results showed that all studied growth attributes, leaf area, leaf number, relative growth rate, and net assimilation rate were decreased in salinity stress conditions compared to the controlled state. The findings indicated that salinity caused a decrement of light utilizing through increased values of fluorescence origin (fo), decreased values of fluorescence maximum (fm), and maximum yield of quantum in photosystem-II (fv/fm). Genotypes differed significantly in all studied attributes except in leaf number. Under salt conditions, Brigitta (monogerm) achieved an increase in net assimilation rate, while Kawimera (multigerm) achieved the lowest decrement in quantum yield in photosystem-II. Further studies are necessary to correlate the yield with yield components under similar conditions to determine the most tolerant genotype.
International Journal of Environment Vol.3(1) 2014: 1-9
Downloads
Downloads
Published
How to Cite
Issue
Section
License
The author(s) acknowledge that the manuscript submitted is his/her/their own original work; all authors participated in the work in a substantive way and are prepared to take public responsibility for the work; all authors have seen and approved the manuscript as submitted; the manuscript has not been published and is not being submitted or considered for publication elsewhere; the text, illustrations, and any other materials included in the manuscript do not infringe(plagiarism) upon any existing copyright or other rights of anyone.
Notwithstanding the above, the Contributor(s) or, if applicable the Contributor’s Employer, retain(s) all proprietary rights other than copyright, such as Patent rights; to use, free of charge, all parts of this article for the author’s future works in books, lectures, classroom teaching or oral presentations; the right to reproduce the article for their own purposes provided the copies are not offered for sale.
The copyright to the contribution identified is transferred to IJE.