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Abstract 

Surface water quality is one of the critical environmental concerns of the globe and water quality management 

is top priority worldwide. In India, River water quality has considerably deteriorated over the years and there 

is an urgent need for improving the surface water quality. The present study aims at use of multivariate 

statistical approaches for interpretation of water quality data of Mahanadi River in India. Monthly water 

quality data pertaining to 16 parameters collected from 12 sampling locations on the river by Central Water 

Commission (CWC) and Central Pollution Control Board (CPCB) is used for the study. Cluster analysis 

(CA), is used to group the sampling locations on the river into homogeneous clusters with similar behaviour. 

Principal component analysis (PCA) is quite effective in identifying the critical parameters for describing the 

water quality of the river in dry and monsoon seasons. PCA and Factor Analysis (FA) was effective in 

explaining 69 and 66% of the total cumulative variance in the water quality if dry and wet seasons respectively. 

Industrial and domestic wastewaters, soil erosion and weathering, soil leaching organic pollution and natural 

pollution were identified as critical sources contribution to pollution of river water. However, the quantitative 

contributions were variable based on the season. Results of multiple linear regression (MLR) are effective in 

explaining the factor loadings and source contributions for most water quality parameters. The study results 

indicate suitability of multivariate statistical approaches to design and plan sampling and sampling programs 

for controlling water quality management programs in river basins.  
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1. Introduction 

Water is considered as one of the vital resources that supports life on the planet. Surface water sources, mostly 

rivers, lakes reservoirs are subjected to water pollution by various natural and anthropogenic sources and 

hence, are subjected to water quality degradation. Natural sources include erosion, weathering, dissolution of 

soil minerals, etc., while anthropogenic sources include wastewater from domestic and industrial activities, 

agricultural runoff, etc., (Singh et al., 2005). Surface water quality is of great importance as it supports life on 

the earth and public health in particular (Iscen et al., 2008). However, surface water quality is mostly 

influenced by hydrological and meteorological factors and human intervention in the hydrological cycle. In 

view of the above, surface water quality management is very challenging for the stakeholders (Bhaduri et al., 

2001). In spite of advances in water quality monitoring in recent times, identification of representative and 

reliable samples is still perplexing (Salve et al., 2001).  In this scenario, studies on spatial-temporal variations 

and source apportionment are worthwhile in management of surface waters (Shrestha et al., 2007).  

Most often, water quality data is huge and can reveal lot of information individually and on inter relationships 

among variables. Hence, while analysing large data, the problem becomes complex to interpret and infer 

reliable conclusions findings (Kazi et al., 2009). In this context, for analysing complex data, research suggests 

use of statistical approaches such as Cluster Analysis (CA), Discriminant Analysis (DA), Principal 

Component analysis / Factor Analysis (PCA/FA) and Absolute Principal Component Score–Multiple Linear 

Regression (APCS-MLR) (Singh et al., 2005). Considering the above, the purpose of the study reported in 

this paper, aimed to adopt some of the above mathematical tools to understand the spatial variations and the 

major sources of water pollution in Mahanadi River basin. Large quantity of data collected during a 10 year 

(2001–2011) monitoring period at twelve different sites for sixteen water quality parameters, and for monsoon 

and dry seasons (about 22,000 observations) were subjected to CA, PCA/FA and APCS - MLR techniques 

to indicate variations in water quality at sampling sites and to identify natural and anthropogenic sources of 

pollution.   

 

2. Materials and methods  

2.1. Study area 

Mahanadi River Basin majorly drains the states of Chhattisgarh and Odisha and smaller portions of 

Jharkhand, Maharashtra and Madhya Pradesh. It is one of important east flowing river in Peninsular India. 

River drains over an area of 141,600 km2, which is about 4% of the total geographical area of the country. 
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The river basin lies between latitude 19o 21’N and 23o 35’N and longitudes 80o 30’ E and 86o 50’E. The River 

Mahanadi originates at an elevation of about 442 m above MSL in Dhamtari district of Chhattisgarh and 

drains into Bay of Bengal. During its course of about 851 km, a number of tributaries (Seonath, Hasdeo, 

Mand, Ib, Bhadar, Jonk, Ong and Tel) join the River on both sides of the banks. Tropical monsoon climate 

with average annual temperature ranging between 15.8 °C to 28.7 °C prevail in the river basin. The average 

annual rainfall is about 1360 mm which mostly occurs during the months of June to September with 

occasional cyclonic storms with heavy rainfall (Dileep et al., 2013). The predominant soil types include red 

and yellow soils, mixed red and black soils (laterite soils). The major land uses in the basin are agriculture 

area, forest reserves, mining areas and urban centres. Figure 1 shows the location of the study area and the 

water quality monitoring locations on the River Mahanadi. 

 

Figure 1. Map of study area and surface water quality monitoring stations in the Mahanadi river basin 

 

2.2. Data Set Preparation 

The Central Water Commission (CWC), Govt of India collect hydrological data and water quality data in 

river Mahanadi and its tributaries at 59 stations. The Mahanadi and Eastern Rivers Organisation under Central 

Water Commission (CWC), Bhubaneswar is engaged in collecting the discharge and water quality data of 

Mahanadi River. Standard Methods for examination of Water and Wastewater (APHA, 2017) were used for 

sampling and analysis of water quality at all locations on the river. The water quality data during the years 

from 2001 to 2011 from twelve monitoring stations provided by CWC was used for the present study. In 

order to overcome missing data problems, 16 water quality parameters were used though CWC collects data 

for 30 parameters. Considered parameters include pH, Electrical conductivity (EC), dissolved oxygen (DO), 
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Temperature, Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Nitrite + nitrate, Total 

Hardness, Fluoride (F), Boron (B), Calcium (Ca), Sodium (Na), Potassium (K), Chloride (Cl), Sulphate (SO4), 

Bicarbonate (HCO3). The complete data sets were divided into two sets to represent water quality of dry and 

monsoon seasons. Dry season includes the month of January, February, March, April, May, June and 

December. The Monsoon season includes the month of July, August, September, October and November.  

 

2.3. Data Pre-Processing 

The data were treated to replace few values which are either not detected or missing with half of its detection 

limit (Nasir et al., 2011) and the rest were filled with the geometric mean of the corresponding data set in order 

to facilitate statistical analysis. Normality test was performed using kurtosis and skewness tests since the 

multivariate statistical techniques requires normally distributed data (Chakrabarty and Sarma, 2011; Kumar 

et al., 2011; Zhou et al., 2007). Cantering, standardization and log-scaling methods are used for pre-treatment 

of data which was not normally distributed. Standardization options were adopted to increase the influence of 

variables with small variance and vice versa (Krishna et al., 2009; Kumar et al., 2014).  Variables that were 

too low or high values were subjected to Log scaling (Felipe-Sotelo et al., 2007). This pre-treatment of the 

data sets was done using XLSTAT 2010. Data was standardised by z-scale transformation in order to 

overcome wrong classification due to different orders of magnitude of both numerical values and variance of 

the parameters considered for PCA ad CA (Simeonov et al., 2003). Microsoft Office Excel 2007 and SPSS 

16 (Trial version) were used for the statistical analysis.  

 

2.4. Cluster analysis 

Cluster analysis is one of the classification techniques used for grouping or clustering data with similar nature 

and it is widely used multivariate statistical technique used to assess surface water quality. Analysis includes 

two steps: a proximity measure and a group-building algorithm. While the proximity measure (determined 

by a distance or similarity matrix and the resulting similarity coefficients) checks closeness or homogeneity 

of the objects, the group-building algorithm assigns groups to the objects based on assessments of the former 

so that objects in the same group are intimately homogeneous and significant differences exist between 

different groups (Kumar Manoj and Padhy, 2014). Dendrogram is demonstrates hierarchical agglomerative 

clustering (Simeonov et al., 2003). In this study, normalized data was used for Cluster Analysis.  Ward’s 

method uses variance approach to determine the distance between clusters in order to reduce the sum of 

squares (SS) of any two clusters that are formed in each step. Euclidean distance indicates the similarity 

between two samples and a distance denoted by variation of analytical values from the sample. Euclidean 

distance is expressed by Eq. (1). 
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dij
2 = ∑ (𝑧𝑖𝑘 −  𝑧𝑗𝑘)2𝑛

𝑘=1                … Eq. (1) 

where, dij
2 = square of Euclidean distance ; zik = k variable for the object i; zjk = k variable for the object j; and 

n =  number of variables.  

 

2.5. Principal Component Analysis 

PCA is a popular pattern recognition tool that focusses on reducing multidimensionality in data.  PCA 

modifies the original variables to new, uncorrelated variables (axes), which are referred as Principal 

Components. However, the new variables are linear combinations of original variables. The new axes fall 

along the maximum variance direction. Thus, PCA results in indices that account for variance in the data 

significantly (Kumar Manoj and Padhy, 2014; Gajbhiye and Awasthi, 2015). Significant principal 

components are those with Eigen values more than 1. PCA describes the significant quality parameters due 

to spatial and seasonal variations (Singh et al., 2004).  Principal Components   indicate most critical parameters 

that describe data with not much loss of information. (Helena et al., 2000). Eq. (2) describes the expression for 

the principal component (PC).  

 

yij = 𝑎𝑖1𝑥1𝑗 + 𝑎𝑖2𝑥2𝑗 +  𝑎𝑖3𝑥3𝑗 + ⋯ … … … … +  𝑎𝑖𝑚𝑥𝑚𝑗  ….. Eq. (2) 

  

where y and a are component score and loading respectively;  x is variable measured; i is component number, 

j is sample number and m is number of variables. 

 

The Kaiser-Meyer-Olkin (KMO) Test is generally used to find if data is suitable for Factor Analysis. The 

statistic determines the proportion of variance among variables that have equal variance. Data is better suited 

for Factor Analysis if the proportion is lower. KMO statistic values range between 0 and 1. As a rule of thumb, 

KMO values in the range of 0.8 - 1, indicate the sample is adequate; < 0.6 indicates inadequate sample 

(Hutcheson and Sofroniou, 1999). KMO values close to 0 indicate widespread correlations which is a problem 

for factor analysis.  

 

Factor Analysis (FA) is a statistical technique used to minimize number of variables into fewer number of 

factors (Shrestha et al., 2008). The method uses maximum variance from all variables and groups them into a 

common score.  The analysis indicates that there is true correlation between variables and factors. Principal 

Component Analysis is one of the popular methods used for factor analysis. New variables, referred as Vari-

Factors (VF) are determined by rotating the axis defined by PCA. VFs are unobservable, hypothetical latent 
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variables while PC is a linear grouping of observable water quality parameters (Vega., 1998; Helena et al., 

2000). Normalized water quality parameters are used for PCA to identify significant PCs which are subjected 

to varimax rotation to yield VFs (Singh et al., 2005). In the process, minimum factors that describe the same 

amount of information are obtained. Eq. (3) represents terms in FA.  

  

Yji = af1f1i + af2f2i + af3f3i +  ..........+ afmfmi+ efi      … Eq. (3) 

 

where Y = measured water quality parameter; a = factor loading; f = factor score; e = residual term describing 

the errors or other source of variation, i = sample number and m = total number of factors. 

 

2.6. Receptor Modelling (APCS-MLR) 

Receptor model is a combination of Multiple Linear Regression model (MLR) and the Absolute Principal 

Component Scores (APCS) (Haji and Mellesse, 2016). The model assumes that the concentration of a 

contaminant under consideration is the sum of pollution components of various sources at the receptor 

location. Absolute scores (APCS) are used to determine pollutant source contributions. As z-transformed 

variables are used for PCA, normalized factor scores are obtained which are subsequently transformed to un-

normalized APCS. Eq. (4) describes standardization of the concentrations of variables under consideration.  

 

Zij = 
(𝑥𝑖𝑗 − 𝑥𝑗)

σ𝑗
  ... Eq. (4)  

 

where  xij = concentration of water quality parameter (j) in sample i; x = mean concentration of variable j, and 

σj = standard deviation of variable j for all samples considered for the study. 

 

Standardized variables are used for PCA which results in normalized factor scores (Az) zero mean and unit 

standard deviation. To estimate absolute zero scores as given in Eq. (5), an artificial sample with zero 

concentration for all variables is introduced (Thurston and Spengler 1985).  

 

(Z0)j =   
(0−𝑋j̅̅ ̅

𝜎𝑗
   = - 

x̅j

σj
  … Eq. (5)  

 

Eq. (6) is used to compute the absolute zero factor scores (A0) for each sample using the factor scores 

coefficients (S) obtained in PCA and Z0. 
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(A0)f = ∑ 𝑆𝑓𝑖
𝐽
𝑗=1 (𝑍0)𝑗     … Eq. (6) 

 

Subtraction of absolute zero factor scores (A0) of each sample from the appropriate normalized factor scores 

(Az), the Absolute Principal Component Scores (APCS) are obtained (see Eq. (7)) (Thurston and Spengler, 

1985).  

 

where f =1, 2, ... , F.  

 

The APCS are not concentrations of water quality parameters, however they can be converted to 

concentrations. The scores are proportional to source contributions. Mass concentrations are computed 

finding proportionality constants using MLR (see Eq. (8)) which takes factor scores as predictor variable. 

Contributions from each source for corresponding water quality parameter are now available for comparison 

with measured concentrations. 

 

Cj = (r0)j + ∑ 𝑟𝑘𝑗 ∗ APCSj𝐹
𝑘=1   … Eq. (8) 

 

where, (r0)j = constant term of multiple regression for parameter j; rkj = coefficient of multiple regression of 

the source k for parameter j; and APCSf  is the absolute Principal Component Score; Combined term, 

rkj*APCS = contribution of source k to Cj. Also, the average of the combined term indicates mean contribution 

of the sources (p). 

 

3. Results and discussion  

3.1. Spatial grouping 

Cluster analysis detects similarity for grouping monitoring stations on the river network. Squared Euclidean 

distance obtained by using Ward’s method on z-transformed data indicates the spatial similarity. Dendrogram 

given in Figure 2 indicates grouping of the twelve sampling sites on the river into three statistically significant 

clusters. Three groups were identified in cluster analysis that exhibited same characteristics and natural 

background source contributions. Cluster 1 (Andhiyarkore, Ghatora, Jondhra, Simga, Salebhata), corresponds 

to monitoring sites in the upper river basin, a relatively low pollution zone. Cluster 2 (Bamnidhi, Baronda) 

correspond to monitoring sites in the middle river basin. Cluster 3 (Kantamal, Kesinga, Kurubhata, Rajim) 
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corresponding to monitoring sites in middle and lower river basin and basically lie in an area comprising of 

red soils.  

 

Figure 2. Dendrogram showing spatial clustering of sampling sites 

Dendrogram is convenient for quick assessment of water quality as one sampling site in a cluster (not all 

monitoring sites) can serve as a good representative site for indicating water quality. Cluster analysis offers 

very useful in grouping sampling sites with similar behaviour and hence classification of surface waters of a 

river system.  Also cluster analysis can be effectively used for optimizing future spatial sampling strategy. In 

the present study, data from three monitoring stations (one from each cluster) can serve the purpose of rapid 

water quality assessment and hence, reduced monitoring costs and risk of losing data for deriving significant 

outcome.  

 

3.2. Principal Component Analysis (PCA) - Factor Analysis (FA) 

Normalized water quality data (16 variables) of dry and monsoon seasons was used for Principal Component 

Analysis - Factor Analysis to find the factors influencing river water quality. Results of KMO and Bartllet’s 

test of sphericity given in Table 1 were used to find if the data is suitable for PCA-FA. KMO values for dry 

and monsoon seasons were 0.896 and 0.831 respectively, while sphericity values from Bartlett’s test were 

8.67x103 and 4.25x103 (p < 0.05) respectively.  Study results demonstrated significant relationships between 

water quality parameters and suitability of PCA analysis. 

 Table 1. KMO and Bartlett’s test of MSA (Dry and Monsoon Seasons) 

 

 

 

 

 

 Dry Season Monsoon Season  

Kaiser-Meyer-Olkin Measure 

of Sampling Adequacy. 

0.896 

 

0.831 

 

Bartlett's Test of Sphericity 

  

  

Approx. Chi-

Square 8.67E+03 4.25E+03 

Df 120 120 

Sig. 0 0 
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As per Kaiser Rule, principal components are identified (with Eigen value >1). For the dry season, four PCs 

(Principal Components), while for wet seasons five PCs were observed in the present study and are presented 

in Table 2 and 3 respectively. The PCs obtained sometimes could not be readily interpreted and, therefore, 

were rotated to generate a new rotated component matrix from the original component matrix. This helps in 

interpretation of the water quality data. VARIMAX approach is the most popular rotation technique. The 

rotation modifies the correlation between the components and the original variables, so that in the new 

extracted components, the important variables are included. These new groups of variables or components 

are termed varimax factors or vari-factors (VFs). The new factor loadings (earlier component loadings) 

generated illustrate the correlation between the variables and the factors. The objects displaying higher loading 

in each factor were interpreted as hallmarks of pollution source that it symbolizes. Factor loadings for 16 water 

quality parameters under study are given in Table 4. Factor loadings >0.75, [0.50–0.75] and [0.30–0.50] 

indicate strong, moderate and weak loadings respectively (Liu et al., 2003; Huang et al., 2010). Results 

indicate many of the factor loadings are above 0.75 indicating strong factor loadings for dry seasons, while 

many of them were under moderate factor loadings for monsoon season. This is perhaps due to the influence 

of dilution on water quality parameters during the monsoon season.  

 

Table 2 .Total Variance Explained (Dry Period) 

 

 

 

Component Initial Eigen values Rotation Sums of Squared Loadings 

Total % of Variance Cumulative % Total % of Variance Cumulative % 

1 7.027 43.921 43.921 6.509 40.678 40.678 

2 1.569 9.808 53.73 1.692 10.576 51.254 

3 1.365 8.532 62.261 1.669 10.428 61.683 

4 1.136 7.101 69.362 1.229 7.679 69.362 

5 0.968 6.047 75.41       

6 0.783 4.892 80.301       

7 0.563 3.521 83.822       

8 0.535 3.346 87.168       

9 0.445 2.781 89.949       

10 0.43 2.69 92.638       

11 0.365 2.283 94.922       

12 0.282 1.764 96.686       

13 0.224 1.402 98.088       

14 0.161 1.003 99.091       

15 0.12 0.748 99.839       

16 0.026 0.161 100       
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Table 3. Total Variance Explained (Monsoon Period) 

 

3.3. Identification of Potential Pollution Sources 

For the dry period, PCA is successful in explaining 69% of the total cumulative variance in the water quality 

data used for the study. Similar findings were reported by Mustapha et al., 2013 in a study on Jakarta River 

basin. The factor loadings and predicted sources of pollution are presented in Table 4 and 5. PC 1 exhibits 

40.6 % of the total variance, indicating significant positive loadings on EC, COD, Total Hardness, Ca, Na, K, 

Cl, SO4, HCO3, weak loadings on BOD and Fluoride and negative loading on DO. COD is an indicator of 

organic pollution from sources such as partially / untreated domestic and industrial wastewater from urban 

areas. (Singh et al., 2005; Chen et al., 2015). EC indicates the presence of dissolved solids. Hardness is 

contributed by multivalent cations which result from dissolution of sedimentary rocks, seepage and run off 

from soils. Ca is constituent of limestone and chalk while SO4 is found in soil and rock minerals. PC1 also 

indicates decomposition process and hence, negative DO loading and positive BOD. Thus, PC1is to be 

interpreted as one type of combined namely, soil leaching and industrial pollution (Fahmi et al., 2011).  

 

 

 

 

 

 

Component 
Initial Eigen values Rotation Sums of Squared Loadings 

Total % of Variance Cumulative % Total % of Variance Cumulative % 

1 5.196 32.477 32.477 3.668 22.926 22.926 

2 1.571 9.817 42.294 2.787 17.422 40.348 

3 1.329 8.305 50.6 1.47 9.19 49.537 

4 1.325 8.28 58.88 1.46 9.123 58.66 

5 1.139 7.119 65.998 1.174 7.338 65.998 

6 0.891 5.569 71.567    

7 0.82 5.125 76.692    

8 0.68 4.247 80.939    

9 0.593 3.707 84.646    

10 0.518 3.236 87.882    

11 0.485 3.03 90.913    

12 0.4 2.502 93.415    

13 0.358 2.237 95.652    

14 0.343 2.145 97.797    

15 0.294 1.835 99.632    

16 0.059 0.368 100    
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Table 4. Varimax Rotated Factor Loadings 

Parameters Component (Dry season) Component (Monsoon season) 

PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 PC5 

pH 0.123 -0.067 0.071 0.671 0.441 -0.064 0.167 -0.269 0.083 

EC 0.896 0.094 0.238 0.03 0.777 0.308 -0.096 0.097 0.04 

DO -0.17 -0.787 0.101 0.017 0.047 -0.293 -0.066 -0.554 -0.466 

Temp -0.016 0.04 0.007 0.824 0.094 -0.082 -0.034 -0.082 0.882 

NO2+NO3 -0.021 0.788 0.073 0.027 0.353 -0.211 -0.099 0.628 -0.295 

BOD 0.35 0.535 0.442 -0.188 0.019 0.09 0.04 0.699 0.001 

COD 0.81 -0.019 0.251 -0.052 0.575 0.377 0.197 0.237 -0.131 

TH 0.907 0.189 0.156 0.011 0.842 0.342 -0.038 0.068 0.012 

F 0.374 0.188 0.576 0.02 0.486 -0.111 0.586 0.17 0.136 

B 0.019 -0.094 0.862 0.122 -0.079 0.129 0.88 -0.051 -0.064 

Ca 0.877 0.17 0.264 0.01 0.868 0.264 0.086 0.097 0.021 

Na 0.863 0.097 -0.023 0.103 0.306 0.783 -0.019 -0.03 -0.062 

K 0.684 -0.02 0.093 0.165 0.198 0.633 0.18 0.267 -0.137 

Cl 0.802 0.108 0.005 0 0.245 0.758 0.134 -0.026 0.13 

SO4 0.746 0.037 -0.306 0.065 0.214 0.66 -0.413 0.054 0.055 

HCO3 0.859 0.137 0.247 -0.03 0.679 0.403 -0.174 0.063 0.023 

 

Table 5. Predicted Sources of Pollution 

DRY SEASON 

Principal 

Component 

Typical Loadings Predicted Sources 

PC 1 EC, COD, Total Hardness, 

Ca, Na, K, Cl, SO4, HCO3 

Industrial and domestic 

wastewaters, Soil leaching 

PC 2 BOD, NO2+NO3, DO Organic pollution 

PC 3 F-, B Soil leaching + weathering 

PC 4 pH, Temp Natural pollution 

MONSOON SEASON 

PC 1 EC, Total Hardness, Ca, 

HCO3, COD, pH 

Industrial and domestic 

wastewaters, Soil leaching 

PC 2 Na,K,Cl Soil erosion, Agricultural runoff 

and weathering 

PC 3 F-,B Soil leaching 

PC 4 BOD, NO2+NO3 Organic pollution 

PC 5 Temp Natural pollution 

 

PC 2 accounts for about 10.5% of the total variance, with strong positive loadings for BOD and NO2+NO3 

and also strong negative loading on DO. This is obvious because organic matter contains nitrogenous matter 

and organic matter depletes DO in waters, hence negative loading. PC 2 represents organic pollution which 

can be attributed to wastewater inflows into the river. PC 3 explains about 10% of total variance with strong 

positive loadings for Boron and moderate loadings on F-. Boron probably represents weathering of rocks, 

possible marine deposits, sea water intrusion etc. (Simenov et al., 2003). As in the present study area there is 

no influence on marine systems, it is mostly due to dissolution of rock minerals. Fluoride is usually contributed 
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by cement plants, chemical and metallurgical industries (Huang et al., 2010).  However, in the study region, 

higher F- levels are reported in ground waters though no significant concentrations are found in river water.  

Low Fluoride concentrations are contributed by local soils through the run-off (Huang et al., 2010). So, this 

can be interpreted as soil leaching. Low concentrations of Fluoride in river water indicate not much 

contributions from cement industries which are around. PC 4 explains for 7.6% of the total variance, with 

significant loadings for pH and Temperature. As the average pH is around 7.6 and average temperature during 

the dry period is around 24oC, this PC can be attributed to natural pollution. However, PC 4 is not very 

significant in the present study.  

 

For the monsoon period, PCA is effective in explaining 66% of total cumulative variance in the water quality 

parameters for the study. Study results indicate that PC 1 accounts for 23% of total variance with significant 

positive loadings for EC, Total Hardness, Ca, HCO3 and Temperature and modest loadings on COD, weak 

loadings on pH and NO2+NO3. This factor can perhaps indicate contributions from dissolution of soil 

minerals in the surface runoff and diluted wastewater inflows from domestic and industries. PC 2 explains 

about 17% of total variance with strong positive loadings for Na, K and Cl. These loadings are contributed by 

minerals granite and other rocks, while potassium is perhaps contributed from agricultural runoff. However, 

the concentration of K at all monitoring sites is less indicating dominant contributions from rock minerals by 

soil weathering and erosion. PC 3 describes 9% of total variance with strong positive loadings for Fluoride 

and Boron indicating contributions from soil leaching. PC 4 accounts for 9% of the total variance with strong 

positive loadings for BOD and NO2+NO3, negative loadings on DO indicating organic pollution. PC 5 

describes 7% of total variance with significant positive loadings for temperature indicating thermal pollution 

due to tropical climate.  

3.4. Source Apportionment using APCS-MLR Modelling 

Absolute Principal Component Scores - Multiple Liner Regression (APCS-MLR) modelling is found to be 

effective for identifying the pollutant inputs from each source to water quality parameters and subsequently 

used for source apportionment (Chen et al., 2013).  Although factor loadings and scores are useful indicators 

for relative comparison, these cannot be applied to quantitative estimations of contributions. In MLR 

modelling, it is assumed that concentrations of each water quality parameter is equal to the sum of 

contributions by several sources at the receptor location.  Results of any study are reliable if n ≥ m + 50 (where 

n is the number of samples and m is the number of pollutants analysed) (Thurston and Spengler (1985). In the 

present study, data considered satisfies the above condition and hence results are reliable. The principal 

components with Eigen value >1 are considered (Kaiser's criteria) to indicate water quality parameters with 

significant impact. Results of APCS-MLR Modelling for dry and monsoon seasons are presented in Table 6.  
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Table 6. Source Apportionment Results of APCS-MLR Modelling 

Parameters Dry Season Monsoon Season 

Un 

explained 

S1 S2 S3 S4 R2 Un 

explained 

S1 S2 S3 S4 S5 R2 

pH 1.00 1.07 1.32 1.35 1.07 0.47 2.16 2.99 0.15 0.69 1.53 0.19 0.37 

EC 51.50 240.21 6.67 33.69 1.67 0.86 11.62 132.71 48.60 8.45 7.40 2.54 0.72 

DO 1.81 0.44 4.62 0.36 0.04 0.65 0.17 0.08 0.75 0.19 3.25 2.19 0.62 

Temp 6.02 0.12 0.47 0.02 17.06 0.68 3.29 0.89 0.76 0.22 0.78 21.05 0.80 

NO2+NO3 0.11 0.00 0.34 0.02 0.01 0.63 - 0.11 0.04 0.01 0.20 0.06 0.60 

BOD 0.03 0.48 1.28 0.94 0.11 0.64 0.46 0.01 0.04 0.01 0.73 - 0.49 

COD 2.62 26.27 0.23 4.97 1.42 0.72 2.73 10.55 4.83 0.29 3.14 0.90 0.58 

TH 2.88 96.45 10.58 7.06 0.66 0.88 3.79 57.16 16.75 0.64 0.97 0.09 0.83 

F 0.01 0.08 0.03 0.13 0.00 0.51 0.01 0.12 0.01 0.16 0.03 0.01 0.60 

B 0.00 0.00 0.00 0.03 0.00 0.76 0.00 0.00 0.00 0.01 0.00 0.00 0.80 

Ca 1.63 20.47 0.93 3.40 1.10 0.86 0.32 13.94 2.81 0.55 0.33 0.41 0.80 

Na 1.71 15.36 1.21 0.14 1.62 0.76 1.42 2.16 7.44 0.03 0.06 0.01 0.70 

K 0.84 2.22 0.02 0.21 0.42 0.50 0.38 0.26 1.49 0.21 0.44 0.15 0.56 

Cl 3.34 18.82 2.25 0.30 - 0.65 1.78 2.10 9.45 0.69 0.08 0.90 0.66 

SO4 1.30 12.11 0.21 3.73 0.41 0.65 0.73 1.45 6.87 3.94 0.11 0.11 0.65 

HCO3 2.15 102.40 15.02 22.31 1.14 0.80 8.96 54.51 26.96 5.84 0.88 0.19 0.65 

 

Higher R2 values (most of them greater than 0.5) in most cases, indicate good consistency in explaining source 

contributions and hence source apportionment (Simeonov et al., 2003). Eq. (8) is used to compute 

contributions from unidentified sources. Predominant sources influencing river water quality in the study area 

are identified as Industrial and domestic wastewaters (S1); Organic pollution (S2); Soil leaching and 

weathering (S3) and natural pollution (S4).during dry season while in wet seasons the sources are Industrial 

and domestic wastewaters (S1); soil erosion and weathering (S2), soil leaching (S3), organic pollution (S4) and 

natural pollution (S5). 

 

4. Conclusions 

Multivariate statistical techniques like CA, PCA/FA and APCS-MLR are used to identify the potential 

polluting sources and their influence on water quality parameters of Mahanadi River Basin. Results of CA 

demonstrated that the monitoring sites can be divided into 3 clusters with similar trends in water quality and 

background contributions. Principal components and factor loadings are successfully used for describing the 

water quality of the river.  The study suggests that PCA can be effectively used for identification of critical 

water quality parameters while monitoring river water. Potential polluting sources in the river system are 

identified as industrial and domestic wastewaters, soil erosion and weathering, soil leaching, organic pollution 

and natural pollution with seasonal variations in quantitative contributions. Results demonstrate the 

applicability of the PCA, FA and APCS-MLR modelling for water quality studies in river basins. The 

correlation coefficient higher than 0.65 for most cases indicates the performance of the methods used for 

describing the water quality variations. Results can be useful in river water quality management and planning. 

Structural Equation Modelling is not attempted in this study due to want of time and data requirements. 
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Sustainable management of rivers requires immediate attention in many of the developing countries in order 

to prevent water quality degradation and to protect the aesthetic value of rivers for future generations. 
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