

INTERNATIONAL JOURNAL OF ENVIRONMENT Volume-4, Issue-1, Dec-Feb 2014/15 **ISSN 2091-2854**

Received:21 August

Revised:20 December

Accepted:9 February

SACRED GROVE OF PUNYAGIRI HILL, VIZIANAGARAM DISTRICT, AP, INDIA: ECOLOGICAL AND SOCIOLOGICAL STUDY

D.Srinivasa Rao¹ & G.M.Narasimha Rao²* ^{1,2} Department of Botany, Andhra University, Visakhapatnam -530 003 INDIA *Corresponding author: gmnrao_algae@hotmail.com

Abstract

Sacred groves are important repositories of rare endangered endemic plants and floral diversity that have been conserved by the local people or communities in a sustainable manner. Sri Umakotilingeswara Swami Temple is a famous Siva Kshetra located in Vizianagaram district of the Andhra Pradesh, India. This holy shrine is situated in the Punyagiri hills, 4 kms away from the Srungavarapu Kota and 62 kms away from the Visakhapatnam (a coastal city of Andhra Pradesh). Two study sites were selected, one was in the sacred grove region another was in forest region. Line transects were used for collection of data on species richness and diversity of the flora. Density and basal area were more in the sacred grove region than the nearby forest region. Some important medicinal and valuable plants were reported in this region, plants such as Saraca asoca (Roxb.), Diospyros peregryna (L.), Sterculia urens (Roxb.), Cleistanthus collinus (Roxb.), Ficus relisiosa (L.), Strublus aspera (L.), Chloroxylon swietenia (L.), Firmiana colorata (Roxb.), Albizia odoratissima (L.), Dalbergia paniculata (Roxb.), Dalbergia sisso (Roxb.), Azadiricta indica A. Juss., Diospyros chloroxylon (L.), Holoptelea integrifolia (Roxb.), Mangifera indica (L.), Eucalyptus globulesv(Labelle), Bombax ceieba (L.), Aegle marmelos, Ailanthus excelsa and some important pteridophytes and Bryophytes were reported in the sacred forest of the Punyagiri hills. Extension of the temple buildings and other developmental activities may be threat to the sacred groves. Invasion by the exotic weeds may further degrade the structure and composition of the sacred forests as a whole.

Key words: Sacred groves, Vizianagaram, ecological and Sociological study

Introduction

Sacred groves are a group of plants or fragments traditionally protected by the communities in reverence of the deity. Sacred groves are ideal places for conservation of biodiversity. Some important medicinal plants which are not available in the forests also maintained in these groves. These are providing vital service to locals in terms water sources and others needs. Many streams are originated from the groves which in turn provide water source for the local inhabitants for their needs. India is a mother land for Gods and Goddess, people worship local deities as well as offer prayers to some plants such as Neem, (Azadirachta indica) Amla(Phyllanthus emblica) and Banyan(Ficus benghalensis) trees and several other plants also. In ancient times, Sacred Groves were places of sanctuary and worship for the Druids. Like a temple or chapel set with in the world, they were places of spiritual refuge; places to calm the mind, refresh the spirit, and give comfort in times of distress. These groves from a network of woodland sanctuaries that radiate peace offer refuge to both wildlife and humankind. Sacred groves have a great significance from the point of view of biodiversity conservation because of they contain some important species of flora and fauna that have been lost in the surrounding area. Unfortunately, most sacred groves India are fast disappearing due to pressures of development and the changing attitude and values of the communities that protected them. In India and in Many other countries such as Ghana, Nigeria, and Turkey people used to set aside tracts of forest because they believed that a particular pockets of the forest had a resident god who must be protected, these areas called "Sacred Groves" have been protected by local communities over the ages. As a result of protection, these groves harbour a great diversity of plant and animal life. The sacred groves of ancient times of become in many cases, the Biosphere Reserves' of today and are found in several parts of India. The states with large tribal populations have the highest number of biosphere reserves in the form of wild life sanctuaries and national parks. In, India the number of sacred groves ranged from 1, 00,000 to 1, 50,000 and in Andhra Pradesh nearly 750 sacred groves are reported (Malhotra et al. 1998). In Andhra Pradesh some investigators (Lakshminarayana et al., 1998; Ravi Prasada Rao et al., 2011; S.K.M Basha, 2012 and Savithramma et al., 2014), worked on the sacred groves distributed in different parts of the state. In the present investigation, a study was undertaken on Punyagiri Hill and nearby forest region to assess the diversity of the plant populations in these two different localities.

Materials and methods

Punyagiri hill is located 4 kms away from the Srungavarapu Kota and 62 kms away from the Visakhapatnam. The latitude and longitude of Punyagiri temple is 18⁰ 11' 190''N and 83⁰ 11' 191''E respectively. Sri Umakotilingeswara Swami Temple is a famous Siva Kshetra situated in the Punyagiri hills. The local temple authorities are maintaining the plant populations in and around the temple. There are several perennial streams in the hill which help the growth of the many bryophytes, Pteridophytes and even algal forms such as blue green algae and Chlorophyceae members. Maha Sivarathri is famous festival on this holy shrine, people from different villages attend and perform pujas and prayers. Phytosociological studies were carried out during July 2011 to June 2012 to cover over all spectrum of vegetation. The structure of sociological order cannot be studied by observing each and every individual in an area. Some sort of vegetation sampling as to be done. In the present investigation, Two study sites were selected, one was in the sacred grove region another was in forest region to get the information on species richness and diversity of the flora.

Data Analysis

The main purpose of the Phytosociological analysis is to understand floristic, vegetation characteristics, to estimate the species richness and diversity which is existing in the study area. Standard protocols of Curtis and McIntosh (1950) and Mueller- Dombois and Ellenberg (1974) have been adopted to analyze the density, frequency and abundance. For calculation of frequency, density and abundance the following formulas have to be used

Density = Total number of Individuals in all sampling units Total number of sampling units studied Frequency = Number of sampling units in which species occur x 100 Total number of sampling units

Basal area

It is the area occupied by the base of a tree, is considered as a good indicator of the size, volume or weight of a tree. It provides information on the proportion or dominance of the larger

and smaller trees in an ecosystem and is one of the most important parameters in estimating the standing biomass in an area.

Basal area = $Cbh^2/4\pi$

Where

Cbh = Circumference of the tree at breast height.

Usually after the quantitative estimation of relative values of density, frequency and dominance, the species are listed in order of decreasing importance.

Important value index (IVI)

The total picture of the relative ecological important and the sociological structure of a given plant species in any community can't be obtained by relative parameters (Relative Frequency, Relative Density, Relative Dominance, etc.,) singly, which give individual clues, although the quantitative value of each such parameter has its own importance. Frequency gives an idea as to how a species is dispersed in the area but we will not get an idea about its number or the area covered. Density on the other handed gives the numerical strength and nothing about the spread or cover. Dominance gives the basal cover only. In order to express the dominance and ecological success of any species with a single value, the concept of important value index have been developed. This index utilizes three characteristics, viz., Relative Frequency, Relative Density and Relative Dominance.

On the basis of these analytical quantitative character values , the idea of obtaining a statistical quantity was proposed in order to have a really overall picture of the ecological importance of the species with respect to the community structure , for which the percentage value of Relative Frequency, Relative Density and Relative Dominance are added together . This value out of 300 is called Important Value Index (IVI). It thus incorporate three important parameters that measures of productivity and diversity of every species therefore.

IVI= Relative Density + Relative Frequency+ Relative Dominance

Relative	density	=	Density value of species	x 100
			Sum of density value of all species	
Relative	frequency	=	Frequency value of species	x 100
			Sum of frequency value of all spec	ies
Relative	dominance =	=	Total basal area of the species	<u>x 100</u>
			Total basal area of all species	

Biodiversity indices

Ecologist have developed and proposed a number of indices of species diversity from time to time, the values of which depend upon mathematically combined effects of species richness (S) and evenness (E). The numerical strength and biomass has a direct effect on the functioning of ecosystem in the course of millions of years, numerous biotic communities have evolved and established themselves. It is there four important to know the diversity of these communities in space and time so as to understand their role in the development of the ecosystem , evaluation and in the maintenance of stability for the quantification of diversity and comparison of species diversities between different ecosystems in various climatic conditions, is useful to calculate an index of diversity and dominance .

Species richness (Species diversity)

Species diversity richness is an expression of community structure. It is described as the number of species present in a sample or habitat per unit area. They are certain indices that can bring them to a similar scale. The simplest species richness index is based on the total number of species and the total number of individuals in a given sample or habitat, higher the value greater the species richness. The more different species present the more diverse the community and is generally considered healthier. Richness tends to increase over area; larger areas will harbors more different species probably because of larger variety of micro habitats and resources. Additionally, sampling over a large area increases the chance of find in rare species.

On the other hand, evenness is a measure of how similar the abundances of different species are categories are in a community. Evenness is ranged from zero. When the evenness is close to one, it indicates that each species categories consist of almost same number of individuals. However, when the abundances of species are very dissimilar (Some rare and some common) then the value increases. The commonly used biodiversity index is Shannon-Wiener index and that of dominance index is Simpson's index.

Simpson's Index (1949):

Species dominance is measured by using this index

 $Cd = \sum (ni/N)^2$

ni = Total number of individuals of each species

N = Total number of individuals of all species

Shannon – wiener Index (1963)

It is also called species diversity index. This index is based on information theory and improves upon the Simpson's by giving more importance to the rare species.

 $H= \sum (ni/N) \log(ni/N)$

ni = Total number of individuals belonging to ith species

N = Total number of individuals in the study area

Results and Discussion:

Table: 1 shows the plant species present in the sacred grove region and Table 2 shows the plant species present in nearby forest region. In sacred grove region (station 1) a total of 57 plants were present, out of these 40 were trees, 8 shrubs and 7 herbs. While in the station 2 (nearby forest region) a total of 40 plant species were present and 20 were trees 6 shrubs, 3 herbs and only one climber. Density of the plant species was more in the station 1 when comparing with station 2. List of the plant species along with their respective families were presented in **Table 1 & 2**. More number of plant species were reported in the sacred grove region than the nearby forest region. Different plant species such as medicinal plant species were also reported in the sacred grove region. **Table 3 & 4** shows the RF, RD and IVI for the important species in two study sites. Table 3 shows the IVI in the sacred grove region. In the area maximum IVI was reported for the species such as *Mangifera indica* (31.6). *Xylia xylocarpa* (11.1) and *Haldinia cordifolia* (10.6) while the **Table: 4** shows the IVI in the station 2. In the region maximum IVI

was reported for the species *Tamarindus indica* (39.4), *Ceiba pentendra* (L.) (22.6) and *Bombax ceiba* (18.1)

Sri Uma Kotilingeswara Swamy Temple

Sacred grove with floral Diversity

Sacred grove with Perennial Stream

Field survey at Sacred grove area

Non Sacred Grove Area (Forest Region)

Location of Punyagiri Sacred grove area

S.No	Name of the Plant Species	Habitat	Family
	Mallotus philippensis(Lam)		·
1		Tree	Euphorbiaceae
	Saraca asoca(Roxb.)		· · · · · · · · · · · · · · · · · · ·
2		Tree	Caesalpiniaceae
	Homonia riperia(L.)		
3	_	Shrub	Euphorbiaceae
	Baliospermum		
	montanum(Willd.)		
4		Shrub	Euphorbiaceae
	Wrightia tinctoria(Roxb.)	Tree	
5			Apocynaceae
	Diospyros peregryna(L.)	Tree	
6			Ebenaceae
	Srerculia urens Roxb.	Tree	
7			Sterculiaceae
	Diospyros sylvatica(L.)	Tree	
8			Ebenaceae
	Ficus relisiosa(L.)	Tree	
9			Moraceae
	Mangifera indica(L)	Tree	
10			Anacardiaceae
	Premna tomentosa(L)	Tree	
11			Verbenaceae
	Dalbergia paniculata(Roxb.)	Tree	
12			Fabaceae
	Hemionytis aurifolia(Roxb.)		
12		Hauk	Adiantagaga
13		Herb	Adiantaceae
1 /	Adathoda vasica(L)	C11	
14	Alan sium aghifalium (Lf)	Shrub	Acanthaceae
	Alangium salvifolium(L.f.)	Tree	
15			Alangiaceae
15	Lagerstroemia parviflora	Tree	Alangiaceae
	(Roxb.)	liee	
16			Lythraceae
10	Terminalia alata(L.)	Tree	
17		1100	Combretaceae
1/	Grangia maderaspetana(L.)		Combretaceae
18	Grangia maderasperana(L.)	Herb	Asteraceae
10	Annona squamosa(L.)	11010	Asiciaceae
19	Annona squamosa(L.)	Tree	Annonaceae
20	Emplia souchifolia(I)	Herb	
20	Emelia sonchifolia(L.)	11010	Asteraceae

Table: 1. Plant species recorded in Sacred Grove Area

International Journal of Environment

	Hemidesmus indicus (L.)	Herb	
21			Asclepiadaceae
22	Gymnema sylvestris(Retz.)	Herb	Asclepiadaceae
	Calotropis gigantia(L.)		
23		Shrub	Asclepiadaceae
24	Memecylon edula(L.)	Tree	Melastomataceae
25	Canthium parviflorum Lam.,	Tree	Rubiaceae
26	Bauhinia purpurea L.	Tree	Caesalpiniaceae
27	Bridelia retusa(L.)	Tree	Euphorbiaceae
28	Bocapo monirea(L.)	Herb	Scrophulariaceae
29	Azadirachta indica A. Juss.	Tree	Meliaceae
30	Albizia odoratissima (L.)	Tree	Mimosaceae
31	Acacia leucoflova(L.)	Tree	Mimosaceae
32	Holoptelia integrifolia(Roxb.)	Tree	Ulmaceae
33	Haldinia cordifolia (Roxb.)	Tree	Rubiaceae
34	cleistanthus collinus(Roxb)	Tree	Euphorbiaceae
35	Colebookia oppositifolia (L)	Shrub	Lamiaceae
36	Manilkara hexandra(L)	Tree	Sapotaceae
37	Wrightia arborea(Roxb.)	Tree	Apocynaceae
38	Xylia xylocarpa (Roxb.)	Tree	Mimosaceae
39	Cocculus hirsutus (L.)	Herb	Minispermaceae
40	<i>Tylophora indica</i> (Burm.f.)	Shrub	Asclepiadaceae
41	Tridax procumbens L.	Herb	Asteraceae
42	Terminalia bellerica (Gaertn.)	Tree	Combretaceae

International Journal of Environment

ISSN 2091-2854

	Holarrhena antidysenterica		
	Wall.		
43		Shrub	Apocynaceae
	Achyranthus aspera (L)		
44		Herb	Amaranthaceae
	Annona reticulate(L)	Tree	
45		_	Annonaceae
	Lannea coromandelica(Houtt.)	Tree	
46			Anacardiaceae
	Garuga pinnata Roxb.	Tree	
47			Bursaraceae
	Aegle marmelos L.	Tree	
48			Rutaceae
	Dichrostachys cinerea L.	Tree	
49			Mimosaceae
	Grewia tiliaefolia Vahl	Tree	
50			Tiliaceae
	Hugonia mysatx L.		
51		Tree	Linaceae
	Macaranga peltata L.		
52		Tree	Euphorbiaceae
	Morinda tinctoria Lam.		
53		Tree	Rubiaceae
	Pongamia pinnata(L.)		
54		Tree	Fabaceae
	Pterospermum		
	xylocarpum(Gaertn.)		
55		Tree	Caesalpiniaceae
	Strublus aspera(L)		
56		Tree	Moraceae
	Strychnos nuxvomica (L)		
57		Tree	Loganiaceae

S.no	Name of the Plant Species	Habitat	Family
	Garuga pinnata Roxb.		
1		Tree	Fabaceae
	Leucaena leucocephala(L)		
2		Tree	Mimosaceae
	Bombax ceiba(L)	_	
3		Tree	Bombacaceae
4	Ceiba pentandra (L)	T	
4	<u>Standin facili da Douh</u>	Tree	Bombacaceae
5	Sterculia foeitida Roxb.	Tree	Sterculiaceae
5	Streblus aspera Lour.	пес	Steredilaceae
6	Sirebius usperu Loui.	Tree	Moraceae
0	Terminalia bellerica (Gaertn.)		
7		Tree	Combretaceae
	Soymida febrifuga (Roxb.)		
8		Tree	Soymidaceae
	Lagerstoremia parviflora(Roxb.)		
9		Tree	Lythraceae
	Tamarindus indicus (L)		
10		Tree	Caesalpiniaceae
11	Bambusa arundinacea (L)	Tree	Bombacaceae
	Pterospermum xylocarpum		
10	Gaertn.)	T	
12		Tree	Sterculiaceae
13	Albizia odoratissima (L)	Tree	Mimosaceae
13	Lantana camera (L)	Shrub	Verbenaceae
14	Euphatorium odoratum(L)	Silluo	verbenaceae
15	Euphatonian ouoratam(E)	Shrub	Asteraceae
10	Erythroxylum monogynum(L)	Since	
16	2.5	Shrub	Euphorbiaceae
	Elephantophus scaber(L)		
17		Herb	Asteraceae
	Azadirachta indica A. Juss.		
18		Tree	Meliaceae
	Anogeissus acuminata Wall. ex		
19		Tree	Combretaceae
	Anogeissus latifolia : (Roxb. ex		
20	DC)	T	
20		Tree	Combretaceae
21	Cleistanthus collinus (Roxb)	Tuss	Dynhauhiaassa
21		Tree	Euphorbiaceae
22	Lannea coromandelica (Houtt.)	Tree	Anacardiaceae

 Table 2. Plant Species recorded in Forest area (Station 2)

International Journal of Environment

	Mallotus philippensis (Lam)		
23		Tree	Euphorbiaceae
	Naringi crenulata (L)		
24		Tree	Rutaceae
	Cipadessa baccifera (L)		
25		Shrub	Meliaceae
	Allophyllus cobbe(L)		
26		Shrub	Sapindaceae
	Pergularia daemia (L)		
27		Herb	Asclepiadaceae
	Hemidesmus indicus (L.)		
28		Herb	Asclepiadaceae
	Callicopteris floribanda(Roxb)		
29		Climber	Combretaceae
	Catunaregum spinosa(Roxb)		
30		Shrub	Rubiaceae

	Name of Tree	Sum of											Shanon
S.No	species	Basalarea	TOI	TNI	Frequency	Fr.Class	Density	R.F	R. D.	R .Do	IVI	Simson index	weiver
1	Mallotus philippensis (Lam)	15398.25	4	18	80	D	3.6	2.59	3.52	0.51	6.63	0.001245675	-0.051257565
2	Saraca asoca(Roxb.)	38024.25	2	5	40	В	1	1.29	0.98	1.26	3.54	9.61169E-05	-0.019692159
3	Wrightia tinctoria (Roxb.)	15398.25	5	25	100	Е	5	3.24	4.90	0.51	8.66	0.002402922	-0.064197557
4	Diospyros peregryna (L.)	45252	2	4	40	В	0.8	1.29	0.78	1.50	3.58	6.15148E-05	-0.016513805
5	Srerculia urens Roxb.	113444.25	3	7	60	С	1.4	1.94	1.37	3.77	7.09	0.000188389	-0.025563343
6	Diospyros sylvatica(L.)	38024.25	5	15	100	E	3	3.24	2.94	1.26	7.45	0.000865052	-0.045043498
7	Ficus relisiosa (L.)	181008	3	10	60	С	2	1.94	1.96	6.01	9.92	0.000384468	-0.033481768
8	Mangifera indica (L)	785625	4	15	80	D	3	2.59	2.94	26.12	31.6	0.000865052	-0.045043498
9	Premna tomentosa(L)	45252	3	9	60	С	1.8	1.94	1.76	1.50	5.21	0.000311419	-0.030941076
10	Dalbergia paniculata(Roxb.)	90818.25	4	16	80	D	3.2	2.59	3.13	3.01	8.75	0.000984237	-0.047167065
11	Alangium salvifolium(L.f.)	15398.25	5	20	100	Е	4	3.24	3.92	0.51	7.68	0.00153787	-0.055158438
12	Lagerstroemia parviflora(Roxb.)	25454.25	4	9	80	D	1.8	2.59	1.76	0.84	5.20	0.000311419	-0.030941076
13	Terminalia alata(L.)	53108.25	3	15	60	С	3	1.94	2.94	1.76	6.65	0.000865052	-0.045043498
14	Annona squamosa(L.)	15398.25	5	15	100	E	3	3.24	2.94	0.51	6.69	0.000865052	-0.045043498
15	Memecylon edula (L.)	11313	2	4	40	В	0.8	1.29	0.78	0.37	2.45	6.15148E-05	-0.016513805
16	Canthiumparviflorum Lam.,	15398.25	3	12	60	С	2.4	1.94	2.35	0.51	4.81	0.000553633	-0.038315034
17	Bauhinia purpurea L.	25454.25	5	16	100	Е	3.2	3.2	3.13	0.84	7.23	0.000984237	-0.047167065
18	Bridelia retusa(L.)	45252	4	17	80	D	3.4	2.59	3.33	1.50	7.43	0.001111111	-0.049237375
19	Azadirichta indica A. Juss.	25454.25	3	9	60	С	1.8	1.94	1.76	0.84	4.55	0.000311419	-0.030941076
20	Albizia odoratissima (L.)	70706.25	4	5	80	D	1	2.59	0.98	2.35	5.92	9.61169E-05	-0.019692159
21	Acacia leucoflova (L.)	25454.25	5	17	100	E	3.4	3.24	3.33	0.84	7.42	0.001111111	-0.049237375

Table: 3 Phytosociological studies of the Sacred grove Area

International Journal of Environment

ISSN 2091-2854

42 | P a g e

	Holoptelia integrifolia (
22	Roxb.)	90818.25	4	15	80	D	3	2.59	2.94	3.01	8.55	0.000865052	-0.045043498
-	Haldinia cordifolia												
23	(Roxb.)	181008	3	14	60	С	2.8	1.94	2.74	6.01	10.71	0.000753556	-0.042863118
24	cleistanthus collinus	25454.25	2	15	<u>(</u>)	C	2	1.04	2.04	0.04	5 72	0.000065050	0.045042409
24	(Roxb)	25454.25	3	15	60	C	3	1.94	2.94	0.84	5.73	0.000865052	-0.045043498
25	Manilkara hexandra(L)	152097	2	3	40	В	0.6	1.29	0.58	5.05	6.94	3.46021E-05	-0.013120288
26	Wrightia arborea (Roxb.)	31425	3	5	60	С	1	1.94	0.98	1.04	3.97	9.61169E-05	-0.019692159
27	Xylia xylocarpa (Roxb.)	90818.25	5	25	100	Е	5	3.24	4.90	3.01	11.16	0.002402922	-0.064197557
	Terminalia bellerica	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			100			0.2.		0101		01002102/22	0.0001137007
28	(Gaertn.)	70706.25	3	12	60	С	2.4	1.94	2.351	2.35	6.65	0.000553633	-0.038315034
29	Annona reticulata (L)	25454.25	2	4	40	В	0.8	1.29	0.78	0.84	2.92	6.15148E-05	-0.016513805
	Lannea												
30	coromandelica(Houtt.)	113444.25	4	13	80	D	2.6	2.59	2.54	3.77	8.91	0.00064975	-0.04062186
31	Garuga pinnata Roxb.	53108.25	4	20	80	D	4	2.59	3.92	1.76	8.28	0.00153787	-0.055158438
32	Aegle marmelos L.	31425	5	10	100	Е	2	3.24	1.96	1.04	6.25	0.000384468	-0.033481768
	Dichrostachys cinerea												
33	L.	15398.25	4	13	80	D	2.6	2.59	2.54	0.51	5.65	0.00064975	-0.04062186
34	Grewia tiliaefolia Vahl	53108.25	3	12	60	С	2.4	1.94	2.35	1.764	6.06	0.000553633	-0.038315034
35	Hugonia mysatx L.	25454.25	4	8	80	D	1.6	2.59	1.56	0.84	5.01	0.000246059	-0.028305572
36	Macaranga peltata L.	181008	4	12	80	D	2.4	2.59	2.35	6.01	10.96	0.000553633	-0.038315034
	Morinda tinctoria												
37	Lam.	38024.25	5	10	100	E	2	3.24	1.96	1.26	6.47	0.000384468	-0.033481768
38	Pongamia pinnata (L.)	25454.25	5	13	100	E	2.6	3.24	2.54	0.84	6.64	0.00064975	-0.04062186
39	Pterospermum xylocarpum(Gaertn.)	53108.25	4	20	80	D	4	2.59	3.92	1.76	8.28	0.00153787	-0.055158438
40	Strublus aspera (L)	15398.25	5	14	100	Е	2.8	3.24	2.74	0.51	6.50	0.000753556	-0.042863118
	Strychnos			<u> </u>				0.21		0.01	0.00		
41	nuxvomica(L)	38024.25	4	9	80	D	1.8	2.59	1.76	1.26	5.62	0.000311419	-0.030941076

TOI: Total Occurrence of Individuals; TNI: Total no of Individuals. RF: Relative Frequency; RD: Relative Density; RDO: Relative Dominance; IVI: Important Value Index

International Journal of Environment

Table: 4 Phytosociological studies of the Forest Area:

		Sum of	TOI		T	E CI	D	DE	DD	D D		G	GL ·
S.No	Name of Tree species Garuga pinnata	Basalarea	TOI	TNI	Frequency	Fr.Class	Density	R.F	R.D	R.Do	IVI	Simson index	Shanon weiver
1	Roxb.	336.1177407	4	12	80	D	2.4	5.33	4.66	2.07	12.07	0.0021802	-0.062136274
-	Leucaena	22011111101	•	12	00		2	0.00		2.07	12.07	0.0021002	0.002100271
2	leucocephala(L)	240.6523469	3	21	60	С	4.2	4	8.17	1.48	13.65	0.006676861	-0.08887934
3	Bombax ceiba(L)	1789.976134	3	8	60	С	1.6	4	3.11	11.05	18.17	0.000968978	-0.046905623
	Ceiba pentandra												
4	(L)	2577.565632	3	7	60	С	1.4	4	2.72	15.92	22.64	0.000741873	-0.042621967
_	Sterculia foeitida		4	1.5	00	D	2	5.00	5.00		10.00	0.000405550	0.05001.4115
5	Roxb.	447.4940334	4	15	80	D	3	5.33	5.83	2.76	13.93	0.003406562	-0.072014117
6	<i>Streblus aspera</i> Lour.	161.097852	3	17	60	С	3.4	4	6.61	0.99	11.60	0.004375539	-0.078020356
0	Terminalia	101.097832	3	1/	00	C	5.4	4	0.01	0.99	11.00	0.004373339	-0.078020550
7	<i>bellerica</i> (Gaertn.)	717.9793158	4	15	80	D	3	5.33	5.83	4.43	15.60	0.003406562	-0.072014117
-	Soymida		-										
8	<i>febrifuga</i> (Roxb.)	447.4940334	3	11	60	С	2.2	4	4.28	2.76	11.04	0.001831973	-0.058575661
	Lagerstoremia												
9	parviflora (Roxb.)	286.3961814	4	15	80	D	3	5.33	5.83	1.76	12.93	0.003406562	-0.072014117
10	Tamarindus			10	0.0				2.00	20 51	20.04	0.001514025	0.054061011
10	indicus (L)	4972.155927	4	10	80	D	2	5.33	3.89	30.71	39.94	0.001514027	-0.054861211
11	Bambusa arundinacea (L)	1145.584726	4	12	80	D	2.4	5.33	4.66	7.07	17.07	0.0021802	-0.062136274
11	Pterospermum	1145.564720	4	12	80	D	2.4	5.55	4.00	7.07	17.07	0.0021802	-0.002130274
	xylocarpum												
12	Gaertn.)	389.8170247	3	8	60	С	1.6	4	3.11	2.40	9.52	0.000968978	-0.046905623
	Albizia		_	-									
13	odoratissima (L)	574.7812251	4	9	80	D	1.8	5.33	3.50	3.55	12.38	0.001226362	-0.050977492
	Azadirichta indica												
14	A. Juss.	336.1177407	3	7	60	С	1.4	4	2.72	2.07	8.80	0.000741873	-0.042621967
	Anogeissus												
	<i>acuminata</i> Wall.			10	00	F	a <i>t</i>	5.00	1		10 7 -	0.0001000	
15	ex	447.4940334	4	12	80	D	2.4	5.33	4.66	2.76	12.76	0.0021802	-0.062136274

International Journal of Environment

ISSN 2

ISSN 2091-2854

44 | P a g e

	Anogeissus												
	latifolia (Roxb. ex												
16	v v	296 2061914	4	10	80	D	2	5 22	3.89	1.76	10.99	0.001514027	0.054961211
16	DC)	286.3961814	4	10	80	D	2	5.33	3.89	1.70	10.99	0.001314027	-0.054861211
	Cleistanthus												
17	collinus (Roxb)	97.45425617	5	24	100	E	4.8	6.66	9.33	0.60	16.60	0.008720798	-0.096160798
	Lannea												
	coromandelica												
18	(Houtt.)	644.3914081	4	15	80	D	3	5.33	5.83	3.98	15.15	0.003406562	-0.072014117
	Mallotus												
19	philippensis(Lam)	161.097852	5	17	100	Е	3.4	6.66	6.61	0.99	14.27	0.004375539	-0.078020356
	Naringi crenulata												
20	(L)	127.2871917	4	12	80	D	2.4	5.33	4.66	0.78	10.78	0.0021802	-0.062136274
	Total	16187.35084	75	257	1500		51.4	100	100	99.99999997	300	0.056003876	-1.276013169

TOI: Total Occurrence of Individuals; TNI: Total no of Individuals. RF: Relative Frequency; RD: Relative Density; RDO: Relative Dominance; IVI: Important Value Index

Conclusion

Therefore a holistic understanding of the current status, structure and function of sacred grove is essential for assessing their ecological role and formulating strategies for their conservation. This paper briefly reviews the studies on sacred groves across the globe in general and India in particular highlighting that the tradition of sacred groves could provide a powerful tool for ensuring biodiversity conservation through community participation. It is very important to upload traditions and belief in order to protect and conserve these unique forest patches which represent the relict vegetation of the concern area. Ecological services rendered by sacred groves needs to be highlighted and people should be made to realize that the conservation of groves in crucial for their sustenance. These sacred groves are the only remnants of the original forest, maintained in near complex condition in many parts of the forest area, as such groves now play a vital role in conservation of biological diversity. The present sacred grove area having 60% of the plants are medicinally use and others are economically important, many rare, endemic and threatened plants like Saraca asoca (Roxb), Diospyros peregryna (L.), Baliospermum montanum (Willd) and Sterculia urens (Roxb) are conserved in the sacred grove area. They could be used as germplasam collection of all the plants in an area, micro propagation and tissue culture of the fast disappearing plants of these groves are to be undertaken on a priority base for conservation.

Acknowledgement

The authors are grateful to local peoples and priests of punyagiri temple sacred grove area for giving valuable information during field survey.

References

- Malhotra, K.C., 1998. Anthropological dimensions of sacred groves in India: an overview. Pages 423-438, In: Ramakrishnan, P.S., Saxena, K.G. and Chandrashekara,U.M. (Editors) Conserving the Sacred for Management. UNESCO and Oxford-IBH Publishing,New Delhi.
- Lakshminarayana, K. and Venkaiah, M., 1998. Biodiversity in the Sacredgroves of North coastal Andhra Pradesh, National Symposium on Conservation of Eastern Ghats, 52-58.

- Raviprasada Rao, B. and Sunitha, S., 2011. Medicinal Plant Resources of Rudrakonda Sacred grove in Nallamalais, Andhra Pradesh, India Journal of Biodiversity Vol. 2(2) 75-89.
- Basha, S.K.M., Umamaheswari, P., Rajyalakshmi, E., Rambabu, M. and Pullaiah, T., 2012. Medicinal flora of Penunsila narasimha sacredgrove ,Eastern Ghats, spsr Nellore district ,Andhra Pradesh,India ,Indian Journal of fundamental and applied life sciences Vol.2(2)334-344.
- Savithramma, N., Yogandhar, P. and Linga Rao, P., 2014. Ethnobotanical studies on Japali Hanuman theertham- A sacred grove of Tirumalahills, Andhra Pradesh ,Journal of Pharmaceutical Sciences and Research, Vol.6(2)83-88.
- Curtis, J.T. and McIntosh, R.P., 1950. The interrelations of certain analytic and synthetic phytosociological characters, *Ecology*, Vol.31 : 434-455.
- Shanon, CE., Weaver, W., 1963. The Mathametical Theory of Communication .The University of Illinois Press, Urbana IL.
- Simpson, E.H., 1949. Measurement of diversity, Nature, 163: 688-688.
- Mueller, D.B. & Ellenberg, H., 1974. Aims and Methods of Vegetation Ecology,pp.200.John Wiley and Sons,Inc., New York.