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Cosmology is a young science – one which attempts to reconstruct 
and explain the entire history of the universe from nearly 14 billions 
of years ago [1]. This history must include an era of accelerated 
expansion, known as “inflation”, which provides the most credible 
explanation to how causal physics in the early universe produced 
the large scale structures that we observe today. However, peering 
back so far in time is difficult and an added difficulty is that many of 
the theoretical pillars of physics upon which the models of inflation 
and gas physics at later times rest have only been proposed within 
the last 3 decades. That hasn’t given both theoretical physicists 
and cosmologists much time to fully flesh out and comprehend 
the situation. The discovery that the expansion of the universe is 
accelerating is among the most significant of recent times.

The current understanding is that this is probably due to the 
present-day universe being dominated by a cosmological constant 
or other fluid-like “dark energy”. Several independent observations 
[2], including large redshift surveys [3,4], indicate that nearly 73% 
of the total energy density of the universe is in the form of dark 
energy and about 23% is in the form of non-baryonic cold dark 
matter particles which clump gravitationally, but which have never 
been directly detected. These scientific enigmas suggest we should 
look to new physics beyond Einstein’s theory of General Relativity 
(GR) and the standard model of particle physics. 

There is no shortage of ideas for how to construct a model which 
is capable to produce a Robertson-Walker-type cosmology with de 
Sitter-type expansion. There is already a large gamut of gravitational 

theories that can explain a period of accelerated expansion of the 
universe with certain modification of Einstein’s theory of general 
relativity [5, 6]. The issue of a late epoch cosmic acceleration is 
not about the difficulty of finding a particular model which could 
mimic as the Lambda-CDM cosmology, described by Einstein 
gravity with a cosmological constant and minimally coupled to 
both the luminous (baryonic) and non-luminous (cold dark) matter. 
Rather, the challenge is to come up with a fully consistent theory in 
4 dimensions that explains the origin of cosmic acceleration, while 
providing insights into some other major problems in physics, 
including the mass hierarchy and the cosmological constant 
problems.

The smoothness of the cosmic microwave background (CMB) 
at the surface of last scattering (∼379, 000 years after the big-
bang) detected by NASA’s WMAP satellites is paradoxical to the 
lumpiness of distribution of matter in the present universe. Further, 
an estimate of gravitational vacuum energy density using quantum 
gravity approaches reveals that our universe would double in 
size in every 10-43 sec. But observations seem to indicate that 
our universe has doubled in size in every 1010 yrs. This leads to 
another paradox, which is that Λobs ∼10-120 Λestimate, or that why 
gravity is so weak on cosmological scales.

Theoretical physics thrives on crises and paradoxes, as in some 
other disciplines of science. To solve the problems, we often search 
for new ideas, physical principles or symmetries in nature! In this 
endeavor, theorists have found a way to reconcile gravity with 
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quantum physics, but at the price of postulating extra dimensions 
beyond the familiar four dimensions of space and time. Such extra 
dimensions, which emerge naturally as we probe spacetime at 
shorter distances, can be of the Kaluza-Klein type (or compact), or 
our observed universe can be a cosmological “brane” embedded 
in a higher-dimensional space [7]. The main motivation for going 
beyond Einstein’s theory of relativity comes from string theory 
– a mathematically consistent theory of quantum gravity in 9+1 
space-time dimensions. The best understanding of string theory is 
in terms of a particle theory via the incredible idea of holography 
[8], which
is apparently the most important theoretical discovery of last 20 
years!

Figure 1: A holographic view of our universe

A holographic universe as simple as shown in Fig. 1 works nicely 
through AdS/CFT correspondence [9, 10] for a 4D particle theory 
with no gravity - that is, for a unified theory of Special  Relativity 
and Quantum Mechanics. However, General Relativity makes 
spacetime dynamical and, as a result, the weight of a cosmological 
vacuum (or dark energy) might vary with both length and time 
scales. This idea brings a fundamental change to the notion of 
vacuum: more precisely, the dark energy that permeates empty 
space and accelerates the expansion of the universe must have 
explanations both in quantum physics and quantum gravity.

To this end, an exciting development in string cosmology is the 
suggestion that the warping of extra dimensions plays a key role in 
localizing gravity on an expanding 3+1 spacetime, or 3-dimensional 
de Sitter brane, which is embedded in a higher-dimensional space. 
This very idea is inspired by a theoretical framework of scientific 

thoughts and also by fundamental theories of gravity, particles and 
fields. A novel feature of a brane-world-type description of the 
physical 3+1 spacetime is that the standard 4-dimensional gravity, 
not very different from Einstein’s general gravity, is realized as the 
zero-mode solution of a 5D graviton wave equation. 

As a canonical example, let us take n = 1. If the background 
geometry is a warped 5D AdS space and the Hubble parameter 
is zero, then one encounters the simplest brane-world model 
proposed by Randall and Sundrum [11]. In this case we already 
know that there exists a massless graviton as the zero-mode 
solution, which reproduces the standard Newtonian gravity on the 
3-brane. The Kaluza-Klein modes arising as the effect of graviton 
fluctuations in the 5D bulk AdS spacetime give rise to corrections 
to the Newton’s force law. The brane-world models proposed in [7, 
11] correspond to a static universe for which the 4D scale factor 
of the universe is constant. This setup is therefore not suitable for 
describing a realistic cosmological model for which space and 
time are dynamical and need to be treated on an equal footing. 
Furthermore, AdS5 is perhaps not the most preferable background 
geometry for a universe to pass through a de Sitter expansion at 
a late epoch. The main reason being that the standard 4D gravity, 
which may be viewed as the zero-mode solution of a 5-dimensional 
graviton wave equation, is not necessarily normalizable if the 
background spacetime is anti de Sitter.

The 5-dimensional metric that we have in mind is 

    

€ 

ds2 = e2A(γ μνdx
μdxν + dz2)

 ……………… (1)
where A= A(z), Here we look for a clas of solutions for which 
the 4-dimensional line elemment takes the standard Friedmann-
Lamitre-Robertson-Walker (FLRW) form
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where k  is the 3D curvature constant (k=0, ±1). The 5D gravity 
action takes the form

    

€ 

Sgrav = M(5)
3 d5x∫ −9(r −2A5) + −γ (−T )∫

 …… (3)
where M(5) is the 5D Planck mass, T is the 3-brane tension and 
A5 is the bulk cosmological term. In static case with a(t) ≡ 1, so 
that ds42 = -dt2+dx2+dy2+dz2, the zero-mode gravity solution is 
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normalizable provided the 3-brane tension satisfies T= 12m3
(5)/l 

and A5 = -6/l2, where l is the radius of curvature of the 5D bulk 
spacetime. In the limit A5 → 0, the 5D spacetime becomes spatially 
flat and gravity is not localized in this case. With A5 = 6/l2> 0 and 
a(t) α eHt, the solution for warp factor is given by

  

€ 

eA(z) = lH
coshHz ,	   

€ 

Τ =
6M ( 5)

3

l
sinhHzc  …… (4)

where zc>0. The mass reduction formula (or Gauss law) is given 
by

	

    

€ 

M(5)
3 =

2MP1
3

πl3H2
 …………… (5)

The 4D effective action is nothing but 
  

€ 

I = d4 −g4∫ (R − 2Λ 4
 

where Λ4=6H2. This result shows that, in an expanding Universe, 
the background spacetime can get natureally warped so as to 
balance the effect of a positive curavature associated with the 4D 
cosmological constant [12]. The zero-mode solution (m2=0), which 
is given by [13]

    

€ 

ϕ0(z) =
b0

(cosh(Hz))3/2  ……… (6)

is clearly normalizable, since is clearly normalizable, since � ∞

−∞
|ψ0(z)|2dz =

πb2
0

2H
.

There is one more bound state solution, i.e.,

ψ1(z) ∝

�
cosh2(Hz)− 1
(cosh(Hz))3/2

, (7)

which corresponds to the choice m2 = 2H2, where m is the mass of 5D Kaluza-Klein modes.
This solution is also normalizable. However, only the zero-mode solution (m2 = 0) is localized
on the de Sitter brane. In the large zH limit, we obtain

ψHz→∞ = c1 e
iµzH + c2 e

−iµzH , (8)

where µ ≡
�

m2

H2 − 9
4
. On a cosmological scale one has H−1 � z. With c1 = 0, all heavy modes

with µ > 0 become oscillating plane waves and are delocalized.

Similar results exist when we supplement a 5D action with a scalar field Lagrangian, namely

S5 =
1

2

�
d5x

√
−g

�
R

κ2
5

− gAB∂Aφ∂Bφ− 2U(φ)
�
, (9)

where κ2
5 ≡ 1/M3

(5). In this case the solutions are given by φ = φ0−κ−1
5

�
3δ(1− δ) sin−1 tanh(Hz/δ),

a(t) ∝ eHt and eA(z) = eA0 [cosh(Hz/δ)]−δ, where where A0 and δ are some constants (0 < δ <
1). Furthermore, the 4-dimensional effective theory is described by the action

Seff =
M2

Pl

2

�
d4x

√
−g4R4 −

�
d4x

√
−g4 Λ4. (10)

The 4D Planck mass MPl and the 4D effective cosmological constant Λ4 read as

M2
Pl ≡

M2
(5) e

3A0 δ

H

√
π Γ [3δ/2]

Γ [(3δ + 1)/2]
, Λ4 =

e3A0 H

κ2
5

�
6δ cosh2 ϕ− 3δ − 1
(coshϕ)2+3δ

dϕ, (11)

where ϕ ≡ Hz
δ
. Note that the case δ = 1 is special for which φ and hence U(φ) are constants.

In this case, as in the model without a scalar field Lagrangian, the 4D Newton’s constant is
finite, despite having a noncompact extra dimension. Similar results exist in a wider class of
(supergravity) models with an arbitrary number n of extra dimensions [14,15].
Let us summarize the main points of our discussions above. The paradigm that the physical

universe is a brane-like 4-dimensional hypersurface is fascinating. The important question that
we attempted to address here is whether or not a canonical theory of 5D gravity can lead to
a 4D description in which Einstein gravity emerges as a consistent de Sitter compactification.
Through this canonical example in 5D, we are not arguing that the simplest braneworld-type
gravitational theory may explain all major cosmological problems of recent times; shifting the
emphasis from conventional explanation for dark energy to a boarder picture of D-dimensional
Einsteins theory leads to a general class of accelerating cosmologies in 3+1 dimensions which
includes Einstein’s general relativity supplemented with a cosmological constant-like term, Λ4.
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Let us summarize the main points of our discussions above. The 
paradigm that the physical universe is a brane-like 4-dimensional 
hypersurface is fascinating. The important question that we 
attempted to address here is whether or not a canonical theory of 
5D gravity can lead to a 4D description in which Einstein gravity 
emerges as a consistent de Sitter compactification.

Through this canonical example in 5D, we are not arguing that 
the simplest braneworld-type gravitational theory may explain all 
major cosmological problems of recent times; shifting the emphasis 
from conventional explanation for dark energy to a boarder picture 
of D-dimensional. Einsteins theory leads to a general class of 
accelerating cosmologies in 3+1 dimensions which includes 
Einstein’s general relativity supplemented with a cosmological 
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It is worth emphasizing that a canonical 5D theory considered above 
admits both an effective 4D Newton constant that remains finite 
and a normalizable graviton wave function. It is straightforward 
to extend the above discussions to 10 dimensions [14,15], or more 
specifically, to string theory, which includes generalizations of both 
standard quantum field theory and GR. The model discussed above 
is sufficiently simple; it is quite possible that the unified theory of 
everything requires a highly symmetric, or even a supersymmetric 
background, such as AdS5 × S5 - a product space of a 5-dimensional 
Anti de Sitter space and a five-sphere. While an AdS5 background 
spacetime is important for studying conformal field theories – for 
its role in the AdS/CFT correspondence [9] – the existence of a 
5-dimensional de Sitter space seems to be equally important for 
obtaining an effective 4D Newton constant that remains finite and 
a normalizable zero-mode graviton wave function. This possibly 
also reveals that the breaking of supersymmetry corresponds to a 
nucleation of the quantum world from an AdS5 to a dS5 state. It is 
fair to argue that in order to determine what dark energy is and why 
it exists requires connecting the cosmic reality of dark energy to a 
better fundamental understanding of microscopic quantum physics. 
We can see two distinct possibilities: either, we’re going to find a 
fatal flaw in our prevailing view of the universe, especially about 
the existence of dark energy, or encounter interesting surprises and 
discoveries in cosmology in the next 1-2 decades.
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