A Density Functional Theory Study on Paracetamol-Oxalic Acid Co-Crystal
DOI:
https://doi.org/10.3126/hp.v9i01.40146Abstract
Paracetamol (PCA) has two well-known polymorphic forms, monoclinic (form I) and orthorhombic (form II). The parallel packing of flat hydrogen bonded layers in the metastable form II results in compaction properties superior to the thermodynamic stable form I which contains corrugated hydrogen bonded layers of molecules. In this study, the structure of Paracetamol (PCA)-Oxalic acid (OXA) co-crystal has been analyzed and found layered structure similar to PCA form II which enhance ability to form tablet. The Density Functional Theory (DFT) has been conducted to find some physicochemical properties of co-crystal. It was observed that the lattice energy of co-crystal is more than that of PCA form II showing more stability on co-crystal. The energy gap between highest occupied molecular orbital and lowest unoccupied molecular orbital (HOMO-LUMO gap) in co-crystal was found less than PCA form II showing bigger enhancement of reactivity.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
This license enables reusers to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and only so long as attribution is given to the creator. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.