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4 ESIME−Zacatenco, Instituto Politécnico Nacional, Edif. 4, 1er. Piso, Col. Lindavista CP 07738, CDMX, México

Abstract: In this article, we will answer a question posed in the book Classical Mechanics by H. Goldstein: “Is
the Hamilton-Jacobi equation the short wavelength limit of the Schrödinger equation?” But, before
that, we will identify an essential element that will take us from the Hamilton-Jacobi equation to the
dynamic equation of non-relativistic quantum mechanics for a function Ψ through an exact procedure.
This element is the linear independence of the functions Ψ and Ψ∗ (their complex conjugate). Their
independence is demonstrated for physical systems where the acting physical potential does not
explicitly depend on time. Proceeding in reverse, from the Schrödinger equation, we obtain the
Hamilton-Jacobi equation, exactly, without additional terms.
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I. Introduction

The significant contribution of Prof. E. Schrödinger in the form of a differential equation that

determines the dynamics of a quantum particle, through a complex function Ψ, based on Prof. L. De

Broglie on the wave behavior of what was previously considered “true” microscopic particles (electrons1,

neutrons2, atoms, and neutral molecules3) is known as wavefunction [1–4]. Schrödinger’s work, which

∗ Corresponding Author: joseluis.lopezbonilla@gmail.com
1 Physicists C. Davisson and L. Germer discovered electron diffraction in 1927. Later, in 1928, P.S. Tartakovski
and, independently, G. Thomson, also observed such diffraction. In 1949, physicist V. Fabrikant and collaborators
observed the diffraction of individual electrons, launched one after another.
2 Diffraction and thermal neutrons were observed using beams generated in a nuclear reactor braked by graphite
blocks.
3 In 1929, physicist O. Stern and his collaborators discovered the wave properties of a beam of neutral atoms and
molecules, separately.
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occurred more or less parallel to Prof. W. Heisenberg’s matrix mechanics, identified the ansatz Ψ(x, t) =

exp{ i
h̄S(x, t)}, which would correspond to a wave behavior, which had the action S(x, t), divided by the

constant of Planck h̄, in its phase angle. The nonlinear Hamilton-Jacobi equation [3], as it is an equation

for action, which in the particular case of a spatial variable x and a variable t, independent of each other,

is written as,

∂S

∂t
(x, t) +

1

2m

(
∂S

∂x
(x, t)

)2

+ U(x) = 0, (1)

where U(x) is the potential, m is the mass parameter and (∂S/∂x)2 is the nonlinear term, was used by

Schrödinger [5] to test the mathematical consistency of his ansatz, leading him to modify this equation

so that it is compatible internally [2]. In the case of a spatial variable, the “modified H-J” equation is

written as,

1

2

((∂S(x, t)
∂t

)∗
+

∂S(x, t)

∂t

)
+

1

2m

(∂S(x, t)
∂x

)(∂S(x, t)
∂x

)∗
+ U(x) = 0, (2)

In [2], using expression (2), the construction of the Schrödinger equation is shown. In reference [3],

starting from the Schrödinger equation, we arrive at an equation similar to the Hamilton-Jacobi one,

which differs from it by an additional term, which disappears in the limit h̄ → 0. It addresses the same

subject [4, 6, 7].

In this article, an element was identified that is absent in the deductions that led from the “mod-

ified Hamilton-Jacobi” equation, as in (2), to the Schrödinger equation (for a field Ψ) [2] and from the

Schrödinger equation for the “Hamilton-Jacobi (with additional term)” equation [3] which, if it had been

included, would allow obtaining the Schrödinger equation, from the same Hamilton-Jacobi equation, and

vice versa, without additional term and without approach, through exact procedures. Such a missing

element is the linear independence of Ψ and Ψ∗, the complex conjugate of Ψ.

A complementary aspect

When the action is evaluated on a curve q = x(t), it is clear that x and t are no longer independent,

and so S(x, t) → Sq(t).

From [3], in the case of a spatial coordinate x, we have that its expression (10.12) is written explicitly

as follows (here another notation is used),

pV(x, p, t)−H(x, p, t) = L(x, t,V(x, p, t)), (3)

where, unlike [3], the independent variable v (written as ẋi in [3]) it does not appear in the leftmost term,

as this must be isolated4 from its expression (8.2), the same as, in the 1-dimensional case, is written as,

p =
∂

∂v
L(x, v, t), (4)

4 Which is always possible because any standard Lagrangian is a convex function on the variable v.
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Thus, we obtain v from (4) in terms of the other independent variables x, p, t:

v = V(x, p, t) (5)

Note that V acquires a specific expression for each specific Lagrangian. Then, for the total time derivative

of the action, in the 1-dimensional version of (10.12), in [3], we write, for a trajectory q = x(t),

d

dt
Sq(t) = L

(
x(t),V

(
x(t), p(t), t

)
, t
)
, (6)

which in general literature appears written in a simplified way as,

d

dt
Sq(t) = L

(
x(t), ẋ(t), t

)
, (7)

II. Development

In this section we obtain the Schrödinger equation, for a spatial variable x, from the Hamilton-

Jacobi equation, following an exact procedure. Conversely, we obtain the Hamilton-Jacobi equation from

the Schrödinger equation, without making any approximations.

The ansatz considered by Schrödinger [2–4, 6, 7] is written as,

Ψ(x, t) = exp

{
i

h̄
S(x, t)

}
, (8)

Let us see below a characteristic that the functions Ψ, given above, and Ψ∗, the complex conjugate of Ψ,

present.

(i) Are the functions Ψ and Ψ∗ linearly dependent?

These functions have two independent variables, x and t, so we should calculate the corresponding

generalized Wronskians, as it is known that the values, all null, of these Wronskians constitute a necessary

condition for linear dependence of the functions considered [8]. Here, however, it will be enough to

calculate one of these Wronskians:

W1 =

∣∣∣∣∣∣∣∣∣
Ψ Ψ∗

∂tΨ ∂tΨ
∗

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣

exp
{

i
h̄S(x, t)

}
exp
{
− i

h̄S(x, t)
}

i
h̄ (∂tS)exp

{
i
h̄S(x, t)

}
− i

h̄ (∂tS)exp
{
− i

h̄S(x, t)
}
∣∣∣∣∣∣∣∣∣

=⇒ W1 = − 2i

h̄
∂tS(x, t). (9)

It can be shown that W1, in (9), admits non-zero values for each physical system in which the acting

potential does not explicitly depend on time. In fact, it can be seen from equation (1) that if the potential
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U does not present an explicit dependence on time, one can expect a solution of this equation that is of

the separable5 type in its variables x and t, or be, in the form,

S(x, t) = a t+ g(x), a ̸= 0, (a = constant), (10)

Note that the separability of S is independent of the dimensionality of the physical system considered.

Thus, from (9) and (10), we have that, for the case considered, W1 ̸= 0; therefore, the functions Ψ and

Ψ∗ are linearly independent.

(ii) The calculation of the derivatives of (8), with respect to x and t, separately, is straightforward.

It can be seen that the non-linear term in (1), previously multiplied by exp{iS(x, t)/h̄}, can be obtained

from the second partial spatial derivative of Ψ, multiplied by h̄2/2m. Thus, we find:

1

2m

(
∂S

∂x

)2

exp

{
i

h̄
S(x, t)

}
︸ ︷︷ ︸ =

ih̄

2m

(
∂2S

∂x2

)
exp

{
i

h̄
S(x, t)

}
− h̄2

2m

∂2

∂x2

(
exp

{
i

h̄
S(x, t)

})
(11)

From Hamilton-Jacobi to Schrödinger

We multiply the Hamilton-Jacobi equation, in (1), by exp{iS(x, t)/h̄}. In the resulting expression

we substitute (11). Thus, we obtain,

exp

{
i

h̄
S(x, t)

}(
∂S

∂t

)
− h̄2

2m

∂2

∂x2

(
exp

{
i

h̄
S(x, t)

})
+ U(x) exp

{
i

h̄
S(x, t)

}
+

+
ih̄

2m

(
∂2S

∂x2

)
exp

{
i

h̄
S(x, t)

}
= 0. (12)

Substituting (8) and the partial derivative of Ψ (with respect to t) into (12), we have,

h̄

i

∂Ψ

∂t
− h̄2

2m

∂2Ψ

∂x2
+ U(x)Ψ +

ih̄

2m

(
∂2S

∂x2

)
Ψ︸ ︷︷ ︸ = 0, (13)

The term in expression that differs from the Schrödinger equation, in the 1-dimensional case is highlighted.

In the following subsection , making use of the linear independence of Ψ and Ψ∗, we manage to “eliminate”

exactly this term.

5 The function g(x) is found by solving the equation that results from substituting (10) into (1).
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The consequence of Ψ and Ψ∗ being linearly independent

As already mentioned, we can eliminate exactly the term highlighted in (13) to arrive at the same

Schrödinger equation. Let’s look at this.

Let us multiply (13) by the complex conjugate of Ψ, that is, by Ψ∗. On the other hand, multiply

the complex conjugate of the equation in (13) by Ψ. Adding these two equations and arranging the terms

we can write,

Ψ∗
{
− h̄2

2m

∂2Ψ

∂x2
+ U(x)Ψ +

h̄

i

∂Ψ

∂t

}
+Ψ

{
− h̄2

2m

∂2Ψ∗

∂x2
+ U(x)Ψ∗ − h̄

i

∂Ψ∗

∂t

}
= 0 (14)

In the homogeneous expression in (14) we use the fact that Ψ and Ψ∗ are linearly independent, so it must

be fulfilled that the terms in braces assume null values for any x and t in the domain of Ψ(x, t). So, we

have,

− h̄2

2m

∂2Ψ

∂x2
+ U(x)Ψ +

h̄

i

∂Ψ

∂t
= 0 & − h̄2

2m

∂2Ψ∗

∂x2
+ U(x)Ψ∗ − h̄

i

∂Ψ∗

∂t
= 0, (15)

obtaining, precisely, the Schrödinger equation and its complex conjugate equation.

The reverse procedure: from Schrödinger to Hamilton-Jacobi

Starting from the equations in (15), we multiply each of them, separately, from left to right, by

Ψ∗ and by Ψ, arriving at (14). In equation (14) the terms can be arranged to obtain the following

expressions: “Ψ∗(∂Ψ/∂t)−Ψ(∂Ψ∗/∂t)”, “Ψ∗(∂2Ψ/∂x2) +Ψ(∂2Ψ∗/∂x2)” and “2U(x)ΨΨ∗”; besides, we

add and subtract the term “(ih̄/2m)(∂2S/∂x2)Ψ∗Ψ”, and after rearranging the terms, we have,

Ψ∗
{
+

h̄

i

∂Ψ

∂t
− h̄2

2m

∂2Ψ

∂x2
+ U(x)Ψ +

ih̄

2m

(
∂2S

∂x2

)
Ψ

}
+

Ψ

{
− h̄

i

∂Ψ∗

∂t
− h̄2

2m

∂2Ψ∗

∂x2
+ U(x)Ψ∗ − ih̄

2m

(
∂2S

∂x2

)
Ψ∗
}

= 0. (16)

hence, by the linear independence argument of Ψ and Ψ∗, we have that the terms between braces must be

null. Thus, we arrive, separately, at expression (13) and its complex conjugate. Using the expression of

the partial time derivative of Ψ, of the second partial spatial derivative of Ψ, and (8), which we substitute

into (13), we have,

h̄

i

(
i

h̄

)(
∂S

∂t

)
exp

{
ih̄

2m
S(x, t)

}
− h̄2

2m

{
− 1

h̄2

(
∂S

∂x

)2

+
i

h̄

(
∂2S

∂x2

)}
exp

{
ih̄

2m
S(x, t)

}
+

+ U(x) exp

{
ih̄

2m
S(x, t)

}
+

ih̄

2m

(
∂2S

∂x2

)
exp

{
ih̄

2m
S(x, t)

}
= 0. (17)
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and, factoring the exponential term and since the oscillatory factor is not zero, we arrive at the Hamilton-

Jacobi equation, (
∂S

∂t

)
+

1

2m

(
∂S

∂x

)2

+ U(x) = 0. (18)

through an exact procedure. In [3], where the 3-dimensional case is considered, starting from the

Schrödinger equation, we arrive at an equation that is modified in relation to the Hamilton-Jacobi

equation, as it includes an additional term given by ih̄/2m∇2S. This equation is called “quantum

Hamilton-Jacobi”, which recovers the Hamilton-Jacobi equation only after taking the limit h̄ → 0.

III. Discussion

Based on what was developed here, we know that starting solely from the Schrödinger equation, as

in [3, 4, 6] it would not be possible to arrive at the Hamilton-Jacobi equation through an exact procedure

(as it would be necessary also to use the complex version conjugate of the Schrödinger equation and the

linear independence of the functions Ψ and Ψ∗), but, in [3, 4, 6], we arrive at the so-called “Quantum

Hamilton-Jacobi equation” (HJQ), which becomes the same Hamilton-Jacobi equation in the limit h̄ → 0,

which eliminates the additional term that appears in the HJQ equation [6]. Thus, the question posed in

[3], which says: “Is the Hamilton-Jacobi equation the short wavelength limit of the Schrödinger equation?”,

will have an answer that will depend on the context considered. In this work, which identifies the exact

procedure to obtain the Hamilton-Jacobi equation from the Schrödinger equation, and vice versa, the

answer would be negative, different from that for the context in which this specific question was originally

defined in [3].

IV. Conclusion

In this article, in the case of a 1-dimensional physical system, with spatial coordinate x, in which

a potential that does not explicitly depend on time acts, it was possible to make the transition from the

Hamilton-Jacobi equation to the Schrödinger equation and, vice versa, through exact procedures. We

have seen two cases. We first started with the Schrödinger ansatz Ψ(x, t) = e(i/h̄)S(x,t), given in (8), we

used the Hamilton-Jacobi equation and obtained (13), which would be a “Schrödinger” type equation

(with additional term), which, however, later gave way to the same Schrödinger equation, in subsection

2.2, where we made use, in addition to (13), of its conjugate equation complex and the mathematical

fact that the functions Ψ and Ψ∗ are linearly independent, which was demonstrated in section 2. With

this, we obtained both the Schrödinger equation and its conjugated complex equation, in (15). In the

second case, seen in subsection 2.3, with the Schrödinger ansatz, given in (8), we simultaneously use the

Schrödinger equations and their complex conjugate to obtain an expression that contains the following
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terms: “Ψ∗(∂Ψ/∂t)−Ψ(∂Ψ∗/∂t)”, “Ψ∗(∂2Ψ/∂x2)+Ψ(∂2Ψ∗/∂x2)” and “2U(x)ΨΨ∗”. Subsequently, us-

ing the linear independence of the functions Ψ and Ψ∗, we arrive at equation (13), and then, by simple

manipulations, we arrive at the Hamilton-Jacobi equation. In both cases the procedures used were exact.

References

[1] Kapitsa PL. Experimento, Teoria y Práctica. Mir; 1981.
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