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Abstract: In this article, which celebrates 100 years of the Stern-Gerlach experiment, we identify and discuss
some limitations of the mathematical field we intend to represent as the Stern-Gerlach magnetic
field. We extend some recent theoretical results concerning Stern-Gerlach eigenenergies, where what
we call “the gradient effect” manifests itself: the contribution of the magnetic field gradient to the
self-energies. Finally, based on an analogy with the Stern-Gerlach effect, we visualized that the Higgs
field must be homogeneous in its minimum energy configuration within the context of the Higgs mass
generation mechanism.
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I. Introduction

Recently, the scientific community celebrated the centenary of the Stern-Gerlach experiment [1–3],

designed by Prof. O. Stern in 1921 and carried out by experimental physicist W. Gerlach and his support

team (a graduate student and a skilled laboratory technician).

Although the Stern-Gerlach experiment was designed to provide proof against the discretization of

the projections of the angular momentum vector (orbital) of the electron on the atom, as Prof. N. Bohr

had postulated in his atomic model1 , and of which Prof. Stern did not agree. He discovered, to the

surprise of physicists at the time, what was later interpreted, within the context of quantum mechanics,

∗ Corresponding Author: joseluis.lopezbonilla@gmail.com
1 The Prof. W. Heisenberg stated [4] that Bohr’s theory, even around 1926, was not well regarded by many
experimental physicists, which they called “atom mysticism”.
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as the equivalent2 of such a discretization3, but for a distinct angular momentum, called intrinsic or spin,

which was not known at the time of the experiment (1922).

The luck that embraced the Stern-Gerlach experiment, allowing the spin to reveal itself indirectly,

was a magnetic field acting in the experiment, with which the spin coupled. Of course, the delicate and

very careful nature of the experimental performance was also important, without which it would not have

been possible to observe the effect [5].

Gerlach’s experimental observations focused on the spatial splitting (occurring in a vertical plane,

which in Figure 1 corresponds to Y = 0) of a beam of silver atoms4 into two secondary beams, which,

consistent with the quantum mechanical description, resulted from the magnetic interaction between the

electron’s spin magnetic moment (in the state with orbital quantum number l = 0), with an external

magnetic field characterized by an intense gradient. This effect (in the vertical plane) is presented in

several quantum mechanics texts [6–35], and each unfolded beam, there are only electrons in the same

spin state: “up” in one beam and “down” in the other beam.

It is noted in those books that nothing is commented on concerning the unfolding of the initial beam

in other planes; for example, there is no mathematical development for the spatial separation into two

secondary beams in the horizontal plane (Z = 0, see Fig. 2). Nor are there any clarifications regarding

the energetic separation (if it happens) by spin states in these unfolded beams. We will return to the

abovementioned problems in section 2 and subsection 2.1.

Fig. 1 shows the general situation of the initial beam being separated into two secondary beams

in the vertical plane. We have omitted the magnet to simplify the figure. Subsequently, approaches to

various aspects of the Stern-Gerlach effect were developed [36–43].

Figure 1. Separation of an incident atomic beam into two specific secondary beams, all contained in the Y = 0
plane, as a manifestation of the Stern-Gerlach effect. Points M and P correspond to the intersection
of the secondary beams with the screen (in the figure we have omitted the source that generates the
magnetic field).

2 In quantum mechanics they would correspond to the eigenvalues of the third component operator of the spin
angular momentum vector operator.
3 Relative to a reference direction defined by the externally applied magnetic field.
4 Or in the variant of Phipps and Taylor [3], with hydrogen atoms with their only electron in the ground state:
n = 1, l = 0.
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Furthermore, it is interesting to mention that the literature contains solutions to problems on

different aspects of quantum mechanics [44–51] and developments in mathematical physics [52–63] that

could find application in more formal aspects of quantum theory.

II. Inevitable deficiency in the approximate representation of
the Stern-Gerlach magnetic field

For a mathematical field to be able to model the physical field within the region between the poles

of the Stern-Gerlach magnet, considering the coordinate directions as shown in Fig. 1, it would have to

have, according to [12], be in the following general form,

B(y, z) = B1(y, z)ĵ + (B0 +B2(y, z))k̂, (1)

but that would not be enough. The field in (1) will correspond to a physical (magnetic) field if it meets

specific requirements compatible with physics; for example, the field should verify the equation of Gauss’s

law of magnetostatics (1st physical requirement),

∇ ·B = 0, (2)

or, also including ∇×B = 0,

∂B1

∂y
= −∂B2

∂z
&

∂B2

∂y
=

∂B1

∂z
.

Hence, we have that the simplest field, with magnitude gradient α, along the Y and Z coordinate

directions, has the following form [31],

B(y, z) = −αyĵ + (B0 + αz)k̂, (3)

with B0 being the homogeneous component and α the gradient of the magnetic field.

The field in (3), which could be adequate in a simple context, must be taken as a rough approxima-

tion for the Stern-Gerlach magnetic field, as it does not present an important characteristic of magnetic

fields in general, that is (2nd requirement physics): present a pseudo-vector character in (1+3) dimen-

sional space; that is, be invariant with respect to the parity transformation. Let’s look at this.

Applying a parity transformation under the field in (3) we have,

B(y, z) ⇒ B′(−y,−z) = −B(y, z) + 2B0k̂, (4)

Wherein, it can be seen that it’s not possible to manifest pseudo-vector behavior; that is, we do

not have: B′(−y,−z) = B(y, z). The mathematical field (3), however, behaves like a vector field if we
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assume (only mathematically) that B0 = 0. Of course, making B0 = 0 in (4) we have: B′(−y,−z) =

− B(y, z), which corresponds to a parity transformation for a vector field; thus, field B reduces to the

expression,

B(y, z) = −αyĵ + αzk̂. (5)

On the other hand, in the Stern-Gerlach experiment, the energetic separation of the atomic electrons

in the incident beam is determined by the homogeneous component (B0) of the magnetic field, but the

spatial separation of the initial beam into two secondary beams is determined by the gradient (α) of

the magnetic field. So, since the directions of the spatial coordinates are so closely linked with a parity

transformation, we have that a vector representation of the magnetic field (with B0 = 0) could only

be adequate in spatial problems related to the Stern-Gerlach experiment where the component B0 is

irrelevant. For example, to solve the Pauli equation considering the separation of the incident beam into

two secondary beams contained in a plane other than the vertical.

It should be noted that the equation of Gauss’s law of magnetostatics ∇ ·B = 0, with B given in

(5), respects parity symmetry if B(y, z) behaves as a vector under the transformation of parity:

∇ ·B(y, z) ⇒ ∇′ ·B′(−y,−z) = −∇ ·
(
−B(y, z)

)
= ∇ ·B(y, z) = 0.

→ ∇′ ·B′ = 0. (6)

As mentioned so far, we have, for example, that in the energy problem of determining the contri-

bution of the magnetic field gradient to the Stern-Gerlach eigenenergies, we should not take B0 = 0;

that is, we can consider the field given in (3) as a sufficient approximation, although the fact that it has

neither a pseudo-vector nor a vector character; this problem was solved in [42]. On the other hand, in

the problem to determine the solutions of the Pauli equation for the states of the atomic electrons in

two beams contained in the horizontal plane (Z = 0), the approximation with B0 = 0, that is, using

the field given in (5), is adequate, as shown in the appendix in [46]. These two approximations, despite

their compatibility with physical requirements (partial in one case, complete in the other case), only

approximately represent a Stern-Gerlach magnetic field, as details of the experimentally generated field

are beyond simple mathematical representation.

We still have one issue to clarify. In the case of representing the Stern-Gerlach magnetic field by a

vector field, as in (5), the invariance of Maxwell’s equations in the face of a parity transformation could

be broken, leading to a possible inconsistency that would not be insignificant; however, this is not the

case. Let’s look at this.

In the experimental context of the Stern-Gerlach effect, the following physical quantities are fixed:

ρ = 0, E = 0, j = 0, so that, for example, the Ampere-Maxwell law equation reduces to the expression:

∇×B = 0, (7)
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the same one that does not change under parity transformation, even in the case where B is represented

by a vector field. In the same way, the Faraday-Lenz law equation does not lose symmetry due to parity

when B is represented by a vector field in the Stern-Gerlach context. This provides additional support

for the validity of the representation given in (5).

What is the meaning of taking B0 = 0?

When considering B0 = 0 in expression (3) to generate (5), we are obviously not changing the

physics of the magnetic field. Otherwise, we are using a mathematical resource valid in a certain con-

text: constructing an approximation mathematics. Let’s look at this. We know that every approximate

expression (in the broadest sense) contains less information than the corresponding exact expression. In

different approaches, different information will be missing5.

Expression (5) is an approximation in which information aboutB0 is missing, while the approxima-

tion given in (3) depends on information about the value of B0 = 0. The difference between the situations

that use approximations in which we have no control over the missing information6 and ours is that here,

we have constructed the approximation (based on certain physical requirements) so that we know what

information is contained in it.

On the other hand, a situation in which it is convenient to take, precisely, B0 = 0, that is, to

represent the magnetic field as a vector field, is when solving the spatial problem in the horizontal plane

Z = 0 (Fig. 2) via the Pauli equation, as shown in [46]. In this situation, we have a spatial separation

without energetic separation7 since electrons are found in both the “up” spin state and the “down” spin

state in both secondary beams.

Figure 2. Separation of an incident atomic beam into two secondary beams as a manifestation of the Stern-Gerlach
effect. Points A and B correspond to the intersection of the secondary beams with the bulkhead.

5 So you wouldn’t be able to find what you expected using a certain approximation!
6 And this loss of information cannot affect the physical system considered.
7 Which, if it appears, would only be compatible with B0 ̸= 0.
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III. The gradient effect

The contribution of the field gradient to eigenenergy

Reference [44] presents the calculations determining the eigenenergies for an electron moving in

a helical magnetic field. These energies depend on the pitch of the helix, a characteristic of the field’s

inhomogeneity. This result served to look for a similar solution for the eigenenergies of atomic electrons

in the Stern-Gerlach experiment, making it possible to show that such a solution exists [42]. It has been

shown mathematically [42], in the case of electrically neutral silver atoms, with spin S = 1/2, entering

a Stern-Gerlach magnet, that their eigenenergies carry a very small contribution from the magnetic field

gradient, which produces displacements of the energy levels in quantity:

ξ0
(
µ2
Bα

2h̄2/2m
)1/3

, (8)

where µB is the Bohr magneton, α the magnitude of the field gradient, h̄ the Planck constant, m

the mass of the electron, and ξ0 a constant. The Stern-Gerlach eigenenergies, incorporating the “gradient

effect,” are given by the expressions,

E−1/2 =
P 2
x

2m
− µBB0 − ξ0

(
µ2
Bα

2h̄2

2m

)1/3

, (9)

E+1/2 =
P 2
x

2m
+ µBB0 − ξ0

(
µ2
Bα

2h̄2

2m

)1/3

, (10)

where B0 is the homogeneous component of the magnetic field. Note in (9) and (10), just for the

sake of consistency, that the gradient-dependent term has energy dimensions. The generalization for the

case of atoms with any spin value S (but fixed for all atoms in the beam), with 2ms + 1 eigenenergies

(with ms being the magnetic quantum number), these are given by the expression,

Ems
=

P 2
x

2m
+ 2msµBB0 − ξ0

(
4m2

sµ
2
Bα

2h̄2

2m

)1/3

, (11)

This result can be found in [43].

The physical Higgs8 field and an analogy

The founders of non-relativistic quantum mechanics did not include mass (of a particle) in the list

of physical observables. For clarification only, it is considered a mass observable.

8 Unfortunately for the scientific community, Prof. P. Higgs, who won the Nobel Prize in Physics in 2013, recently
passed away.
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The state of a massive quantum particle could be expressed as a linear combination of the eigenstates

of the corresponding mass operator. In general, this would mean that the particle, despite the value of its

mass being included in the Schroedinger equation, could not be assigned a well-defined mass according

to the Copenhagen interpretation.

On the other hand, within the scope of the most fundamental physical theories, among the initial

considerations of their construction and to preserve a certain symmetry, it is assumed that the particles

are not massive, despite them having a well-defined mass.

In the case of the foundations of the theory for electroweak unification, proposed by Professors S.

Glashow, S. Weinberg, and A. Salam [64–67], electrons and their neutrinos, in particular, are considered

massless. Due to its coupling with the so-called Higgs field, the electron acquires mass. This interaction

between the electron and the Higgs field happens via a certain symmetry-breaking Higgs mechanism, but

neutrinos will remain massless because they do not interact with this field.

Considering sections 3.1, and independently of the formal issues of electroweak theory, we can

partially understand one aspect of it using an analogy with the Stern-Gerlach case: the Higgs field is

expected to be homogeneous in the context in which electrons couple to this one and gain mass; otherwise

(as we saw in the Stern-Gerlach case), an additional shift in energy (or mass) levels would be expected

due to a gradient effect. In this case, the electron would have a different mass.

In fact, the Higgs field, which must be homogeneous in its minimum energy configuration in order not

to violate the translational symmetry of the vacuum state, acts as if it were the homogeneous component

of the Stern-Gerlach field and produces the split between the mass of the electron and its neutrino.
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