
4

Application of Logistic Regression Model in Physics Education

Shobha Kanta Lamichhane
Tribhuvan University, Prithwi Narayan Campus, Pokhara, Nepal

sklamichhane@hotmail.com

Abstract
This paper introduces a logistic regression model used to analyze multiple-choice test data of physics test. It does not involve 
decision making. It is a predictive model and is more akin to nonlinearity, such as fi tting a polynomial to a set of data values. 
Brief description of the goals and algorithms of such a model is provided, together with examples illustrating their applications 
in physics. Priority haven been given for data interpretation rather than mathematical complexities.
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Introduction
The logistic model computes the probability of 
the selected response as a function of the values 
of the predictor variables. If a predictor variable is 
categorical with two values, then one of the values 
is assigned the value 1 and the other is assigned 
the value 0. If a predictor variable is a categorical 
with more than two categories, then a separate 
dummy variable is generated to represent each of 
the categories except for one which is excluded.  
The value of the dummy variable is 1 if the variable 
has that category, and the value is 0 if the variable 
has any other category. If the variable has the value 
of excluded category, the entire dummy variable 
generated for the variables are zero. 

In connection with physics education research (PER), 
its prime goal is to develop pedagogical techniques 
and strategies that will help students learning 
physics more effectively. Teaching and evaluation 
are two inseparable parts of education. Evaluation is 
considered to be an integral part of learning, which 
consists of multiple choice test items, frequently 
used in competitive exams. Keeping this in mind, 
multiple-choice tests are increasingly used in physics 
education to assess students understanding/learning. 
Appropriate and effective approaches to data analysis 
of multiple-choice tests thus become an important 
research topic. To facilitate data analysis and 
interpretation, physics education researchers have 
adopted various testing techniques from educational 
and psychological studies. These techniques 
benefi ted many studies published in international 
journal and other forms of publication. 

 Despite the volume of the literatures on mathematical 
theories of diverse testing techniques, a concise 
introduction to frequently encountered approaches 
of data analysis suitable for PER is much needed. 
In this paper, attempts have been made to introduce 
approaches to analyzing multiple-choice test data, 
viz: classical test theory (CTT). Specifi cally, the 
goals and basic algorithms of said approach offering 
examples to demonstrate data interpretation. 
Emphasis is placed on applications of said approach 
in the context of PER studies. Since it is not my 
intention to present comprehensive theories of 
statistics so that I have minimize mathematical details 
and avoid derivations that can be found in the listed 
references [1,2,3,4,5,6,7]. I also do not intend to 
pursue highly technical issues that are controversial 
even among statisticians and psycho-metricians; 
therefore results and discussions presented in this 
paper are in compliance with conventional norms 
that are commonly recognized in education. Other 
related issues not covered herein include the pros 
and cons of multiple-choice tests [1] various types of 
test validity [2] and pre/post use of multiple-choice 
tests to gauge the effectiveness of traditional courses 
and hence taken as a feedback to reform them [3]. 
Keeping these in mind, we choose the use of multiple 
choice test items for students understanding. Other 
logical reasons behind it are easy for strict time 
framing, interpretation of results in numerical form 
and wide range of course coverage.    

Methodology
Several multiple choice test items were designed 
for the entrance examination of grade eleven 
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(immediately after the result of School Leaving 
Certifi cate, SLC, board examination) for SOS Herman 
Gmeiner Higher Secondary School Gandaki (one 
among the best in Nepal) Rambazar, Pokhara, in July, 
2008. Out of those only 33 items were selected fall 
under general mechanics, hydrostatic and elasticity 
based on SLC course. Those students, who have good 
background of Mathematics, English, Science and 
have secured 70 percent or above in their SLC are 
considered to be eligible for entrance examination. 
Three hundred and eighty nine students were 
appeared in the examination. The exam was under 
full control and its duration was for two hours. In 
brief, overall management of the examination was 
quite satisfactory. The seat plan were arranged as 
(2×2) in each bench-desk in a row with two coulombs 
having the capacity of forty students invigilated by 
two faculty members in each room, supervised by 
the principal. The distribution of the examinee is 
according to their registration number. Sealing of 
the papers was made after verifying and recounting 
according to their attendance slip. The checking of 
the papers was started just after the examination 
till their end under the close supervision of school 
authorities. Listings of the marks were done 
immediately after the checking and sample cross 
checking and then entry of marks was made with the 
help of the computer programming. The tabulation 
of the raw score distribution is in tabular form given 
in appendix. 

Results and discussion
Based on statistics, item response theory (IRT) is a 
modern test theory, used to estimate item characteristic 
parameters and examinees’ latent abilities [8].  
Here, item characteristic parameters include item 
diffi culty and discrimination index, which may 
seem the same as those in CTT but have different 
meaning. Examinees’ latent abilities are referred 
to as examinees’ general knowledge, capabilities, 
and skills in a specifi c domain. IRT assumes one 
uni-dimensional skill or ability that underlines 
examinees’ responses to all items. This skill or ability 
is considered as latent because it is a nonphysical 
entity and is not directly measured. For example, a 
student’s score on mechanics multiple-choice test is 

only an outcome of his/her understanding of it but is 
not his/her understanding in physics itself. Simply, 
general mechanics test can be taken as the subset of 
the universal set (understanding SLC physics course). 
IRT, however, intends to provide an estimate of such 
un-measurable entities.

 Fig.1. characteristic curve.

The basic task of IRT is to use logistic regression 
to formulate observed binary data. A graphical 
representation of this logistic regression (also known 
as the item characteristic curve) [9] is depicted in Fig. 
1. Here, the horizontal axis represents latent ability 
(θ) and the vertical axis shows the probability P(θ ) 
of answering an item correctly. Two parameters are 
useful in describing the shape of the curve. One is 
the location of the curve’s middle point; the other is 
the slope of the curve at the middle point. The middle 
point is at P(θ ) =0.5, and its corresponding value 
along the ability scale θ is defi ned as item diffi culty. 
In other words, item diffi culty is the ability value 
at a 50% probability of correct response. So, the 
greater the diffi culty value of a particular test item, 
the higher an ability level is required to have a 50% 
probability of correct response. This is different 
from the diffi culty measure in classical test theory. 
As for the slope of the curve, it has a maximum at 
the middle point. If the slope is large, the curve is 
steeper, indicating that students of high abilities 
have a greater probability of correct response than 
those of low abilities. Conversely, if the middle point 
slope is small, the curve is fl atter; students of high 
abilities have nearly the same probability of correct 
response as those of low abilities. In this sense, the 
slope at the middle point is a measure of an item’s 
discrimination. In IRT, let the item diffi culty and 
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discrimination parameters are denoted by b and a, 
respectively. Using these notions, the mathematical 
expression of this logistic regression model is given 
by
    

Where, P(θ) is estimated probablity, baz += θ, z is 
predictive valiable.  Further, item characteristic parameters 
a and b belongs to the students’ hidden abilities.

Now, one of the core issues in IRT is to determine 
the item characteristic parameters ‘a’ and ‘b’. This 
is two-parameter logistic regression model. So as 
to evaluate the said constants, let us further discuss 
more about this model. The extension of this is 
three-parameter Birnbaum model [10] considers 
a guessing effect and introduces a new parameter 
c. This parameter 'c' represents the probability of 
guessing a correct response for those who do not 
possess the necessary ability to answer it correctly. 
Thus, the observed probability of correct response 
now becomes ‘c[1-P(θ)] + P(θ)’. In this model, three 
parameters need to be determined. To demonstrate 
how IRT can be a useful tool in evaluating multiple-
choice items, we provide the following example 
using the three-parameter Birnbaum model as 
calculated by multilog [11]. Results are based on 
binary data collected from three hundred and eight 
students’ responses to thirty three items in the 
SOSHGS entrance examination test. Recall that our 
goal is to estimate the item characteristic parameters 
a, b, and c for each of the individual items. For 
illustration purposes, as shown in Fig. 2, item 
characteristic curves of two items: 27 and 33. 

Fig .2. Item characteristic curves for two items (say, 27 and 33).

As seen, item 27 has a positive discrimination value 
a=0.74, displaying a monotonically increasing 
“sigmoidal shape” curve in the range of θ Є [−3, 
+3]. The value along the θscale for the curve middle 
point is 1.25, meaning is its item diffi culty is b=1.25. 
Simply put, students whose ability value is 1.25 have 
a 50% probability of correctly answering this item. 
The lower left part of the curve shows an asymptote 
of 0.13, indicating that students of low abilities have 
a 13% probability of guessing this item correctly. 
As opposed to item 27, item 33 displays nearly a fl at 
line (a=0.04) in the θ Є [−3, +3] range, indicating 
the item fails to distinguish students of high abilities 
from those of low abilities. The reason for this may be 
due to the high diffi culty level of this item (b =22.9). 

In the above example, the ability scale can be 
generally described as students’ knowledge of 
energy topics in mechanics. The reason is twofold. 
First, IRT assumes a uni-dimensional scale for the 
entire test. Second, the exam solely focuses on topics 
in mechanics that are covered in the SLC mechanics 
course. Of course, here is that IRT estimated abilities 
may be correlated with, but are not identical to, test 
total scores. A total score may be dependent on 
the specifi c questions used in a test, whereas IRT-

estimated abilities are independent of the questions 
used in a test. For an elaborated proof, refer to Ref 
[11]. Similarly, the item diffi culty and discrimination 
parameters in IRT are also independent of examinees 
who take the test.

In addition to the above application, IRT can be 
used to evaluate the functions of distracters in each 
item. The basic idea is to examine trace lines for 
alternative choices. As an example, we plot in Fig. 3 
alternative-choice trace lines for one item (say, 30) 
in the SOSHGS entrance test using some other model 
[12,13]. In this example, the correct choice (choice 
b) displays a monotonically increasing ‘S’ curve in 
the θ Є [−3, +3] range. Therefore, students of high 
abilities are more likely to choose the correct answer 
than those of low abilities. As for choices ‘a’ and 
‘c’, the trace lines have a reverse trend. So, students 
of low abilities are more likely to select choice ‘a’ 
or ‘c’ than those of high abilities. Take choice 'c' for 
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example; the probability of choosing this answer is 
less than one or two percent for students of an ability 
value of +3, but it is as more than fourty percent for 
those of an ability value of −3. As for choice‘d’, the 
trace line is relatively fl at and low, suggesting that 
not many students choose this answer at any ability 
level. Therefore, alternative choices ‘a’ and ‘c’ 
seem to function better than choice‘d’ in distracting 
students of low abilities.

 

 

  Fig.3. Alternative choices of a single item.

In Fig. 3, we once again plot probabilities against 
latent abilities, not test total scores. In fact, it is 
much easier to use total scores as a substitute for 
abilities than to perform IRT. This is particularly true 
when one lacks adequate knowledge of IRT.  As a 
rudimentary step toward IRT using total scores as a 
substitute for θ can provide a glimpse of what real 
IRT curves may look like. A recent study by Morris 
et al. used this approach to evaluate force concept 
inventory items [14]. Conversely, a paper by Lee et 
al. employed two-parameter IRT to measure student 
latent abilities in physics [15].

Finally, some practical issues of IRT are worth noting. 
First, a large sample size generally is recommended 
for a good model fi t. Since the Rasch model estimates 
fewest parameters, a data set of as few as 100 may 
be needed for stable results [16]. (Linacre [17] 
suggested 50 for the simplest Rasch model.). For 
other models, a sample size of several hundred often 
is required. Also, different study purposes may call 
for different sample sizes. For example, calibration 
of high-stake test items may require sample sizes 

over 500 to ensure accuracy. But for low-stake 
tests, “one does not need large sample sizes.” [18]. 
Secondly, there have been great controversies on IRT 
model selections. Though the three-parameter model 
seems to be the most complicated and hence the most 
stringent model, arguments have been made that it 
in fact is the most general model and that the other 
two models (the Rasch and two-parameter models) 
are just special cases of the three parameter model 
[19]. Therefore, it is recommended that the three-
parameter should be used [20]. On the other hand, 
the seemingly simple expression of the Rasch model 
continues to attract many researchers. Thorough 
discussions on these issues, interested readers can 
refer to ref [21] for more information.

Conclusion
In this paper, discussions have been made to 
the goals, basic algorithms, and applications of 
analyzing multiple-choice test items in physics. 
Using logistic regression principle, one can describe 
the propensity of correct responses to the individual 
items. As a result, it is evident from above discussion 
that estimated item measure and examinees’ abilities 
are mutually independent. Moreover, IRT can also 
use to examine how effective the choices of a 
particular item/question. Because of its emphasis 
on individual items, theory is better named as “item 
response theory.” Our ultimate goal is to make 
sense of raw data; therefore, we choose four items, 
encountering two (or more) equally sound choices. 
While analyzing the obtained raw data, one should 
always prefer the one that better facilitates the 
graphical data interpretation. In our case choosing 
an item have equal probability. For the purposeful 
meaning of data interpretation, fi tting a curve should 
be probabilistic, and hence logistic regression model 
is chosen which follows probability distribution.
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 Appendix

Table: Indics for item analysis and studens' score distribution

Item
Diffi culty

index 
Discrimination

index 
Point biserial 

coeffi cient 

1 0.24 0.4 0.39 

2 0.65 0.57 0.46 

3 0.39 0.64 0.52 

4 0.88 0.22 0.24 

5 0.76 0.25 0.25 

6 0.79 0.14 0.18 

7 0.31 0.57 0.50 

8 0.26 0.41 0.37 

9 0.82 0.28 0.26 

10 0.52 0.45 0.37 

11 0.83 0.27 0.26 

12 0.72 0.5 0.39 

13 0.65 0.59 0.42 

14 0.79 0.42 0.32 

15 0.43 0.62 0.47 

16 0.32 0.47 0.38 

17 0.73 0.29 0.23 

18 0.34 0.39 0.35 

19 0.65 0.30 0.30 

20 0.66 0.27 0.25 

21 0.33 0.3 0.26 

22 0.37 0.39 0.27 

23 0.43 0.41 0.31 

24 0.13 0.10 0.15 

25 0.80 0.37 0.30 

26 0.59 0.26 0.16 

27 0.39 0.56 0.47 

28 0.36 0.18 0.18 

29 0.67 0.41 0.34 

30 0.67 0.45 0.36 

31 0.33 0.32 0.28 

32 0.29 0.54 0.43 

33 0.32 0.33 0.29 

Total score No. of students Total score No. of students 

0 0 17 39 

1 0 18 27 

2 0 19 25 

3 0 20 17 

4 1 21 25 

5 0 22 14 

6 1 23 14 

7 2 24 15 

8 2 25 10 

9 4 26 3 

10 13 27 7 

11 17 28 6 

12 17 29 4 

13 25 30 3 

14 39 31 0 

15 29 32 1 

16 29 33 0 
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