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EXTENSION
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Beginning with the Cobb Douglas production function, this paper analyses several
production models which are derivable from the Cobb Douglas function by means of simple
changes in the latter. Itis maintained that theoretical justification, empirical attractiveness,
ability to extract meaningful structural relationship from the data, the use of practical and
measurable variables and the ease of statistical estimation are sc me of the basic requireme-

nts of any production model. The paper begirs with an elementary introducticn  to the sub-

ject.

To the economist, the production function is a tool for the explanation of decisions
already made. The manager attempts to select the best production decision by eclimination

from a set of alternatives for actual implementation. The engineer maximises cutput for &

given sct of inputs through his choice of technology. The profit maximising firm subjects the
production function to restrictions regarding rewards to inputs for their contribution to the

output and suitably combines technological considerations with economic requirements,

The production function, as an embodiment of technological constraints imposed
on economic decisions, is not supposed to includs eaplicitly ecorem’c variables like interest
or prices. The form of the relationship between outputs and inputs is not based on economic

decisions but the behavioural and organisational aspects are not excluded; Monga (1979). In
spite of controversies about various matters like theoretical justification, inconsisiencies in
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results, aggregation problems etc. associated with the production functicn, soms production
models in common use have done reasonably well on purely empirical grounds. They have
been successfully employed at various levels of aggregation and for different kinds of data, At
the same time a search continously goes on to find a better expression for a production model
which is technically and economically meaningful and satisfies certain basic requirements.
Simple as wel as very complex models have been tried, theoretically and empirically with
plenty of applications to industrial data. It is realised that a complicated expression does not
necessarily provide a better model, a simpler form may sometimes be more useful. Theoretical
justification so far as possible, empirical attractiveness, ability to extract meaningful

structural relationship from the data, inclusion of such variables as are available
in practice and are measurable and the ease of the estimation of parameters are some of the

basic requirements of any production function model.

So far as the study of a variety of production function forms and their use in the
literature is concerned, the situation is not very happy. There are some interesting surveys of
production function studies like those of Walter (1963), Hildebrand and Liu (1965) and Ner-
love (1967). It seems necessary now to go for a more practical and perhaps more ambitious

survey on different lines based on the way different forms evolved along with a consideration
of their connecting links and the factors entering into various production models. Perlaps a

number of forms could be derived from a few generalised production models but that would co<
nceal the essence of the development of the idea of the production function. Such an approach
or a catalogue of forms cannot help us in understanding the evolution and spreading of the pr-
oduction function idea. The scope of this paper is limited to the analysis of some of the exten-
sions of the Cobb Douglas production function only. This has been done, one, because of
limitations of space, two, because other forms have been treated independently in other papers
(yet to bz published) and three, because the nature of analysis for other models of production

function differs considerably from that of Cobb Douglas function which is treated here.

The overall plan of this work covers and analyses a large number of forms of pro-
duction functions, developed during the last two decades, and presents them in a form which
may be found useful and handly in as much as that should make the choice of a suitable form
<asier in empirical work. Adjustments and improvements in the available forms, depending on
requirements, should also be more convenient by this procedure. The subject has been highly

scattered and developed at an uneven pace, concentrating on some aspect or the other of the
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problem at different periods of time depending on requirements. However on a careful obset-
yation of the undercurrent, some systematic and continuous development cannot fail to be
noticed. A mere categorisation of some forms is neither feasible nor meaningful. What is req-
uired is a study of the development of the idea, without sacrificing the value of individual atte-
mpts which though sometimes trivial, made some contribution to the subject. A quick deriva-
tion from some mathematically general form, of all the particular forms will suppress the role
of individual forms and make them look trivial. At the same time the possibility of further ext-
ensions from simpler forms in different directions and for different purposes cannot be ruled
out. Removal of certain restrictions, use of cost functions, introduction of er removal of some
explanatory factors, incorporation in a suitablc form of experience gained from empirical
studies and introduction of certain assumptions about the nature of the parameters involved
are some of the strategies used to bring about an improvement of existing forms. It may be
found more realistic in some cases to incorporate in the production function such assumptions
as variability of elasticity of substitution, returns to scale and marginal products.

The treatment of the various models in this paper will, perforce, have to be rather

brief but attempt will be made to leave out nothing of importance.
The Dafinition of the Neoclassical Production Function and Related Concapts

The neoclassical production function is a mathematical statement expressing the
technological relationship between the output of a process and the inputs entering into the
process with possibilities of substitution. Let X=(X1,. , Xa ) bethe vector of n inputs Xy
X2, ..., Xn where each Xi > [J. Then, to each point in the input space there is a unique non.

negative output point. The general production function for a single output .Q, produced from
n variable inputs, may be written.

Q=FX1.X2 ..,Xa >

This function is assumed to be single valued and continnously. differentiable.

There exists an economic region which is a subset of the input space in which out-
put dose not decrease as input increases. For any two vector point xi) and xi (> xi) in the
economic region we have F ( xj ) >F ( xi ) which implies that the first partial derivatives or
marginal produets are nonnegative.

WFs x> (] i=1,2,..,n
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The law of diminishing returns requiries 82F/8 xi2 <O, i=l2,..,n.
In a convex subset of the economic region the Hessian his negative definite where*

bR d2F 52F
2 5600
6X1 6X18X2 lebXn I
h=| .
h2F »2F 52F

Further, F( vx )>>vF (X) according as the production function exhibits increasing.

constant or decreasing returns to scale. Also, the point returns to scale E (X) = S Ei (X)

where the elasticity of output with respect to thei th input is
Ei (X) =(Xi [F) 3F/3Xi i=1,2,...n.

The elasticity of substitution between two inputs, X;, X;, with other inputs held

constant, is given by din Xi
81§31 [3F/3F)
—(Xi[3X])
which is also the curvature of the isoquants. Since, along an isoquant,

1 dF
=X, dX - 0, we have, in the two input case
1 1
6F 6 F r
SF S 4 =10
3x; d%; Tt 8X; i
. dX,_ _ SF/EX. _ MP.
o= = S
dX; 3FI8X  MP;

where MPi, MPj stand for the marginal products of Xi. X} respectively. Hence
dln xi /xj

°’ij =d In (-dx; [dxj )
The feasible region of production space is the closed half space difind by

Q € F(X!I, X2,.., Xn).

This is merely a description of the boundary of production choices relating Q with Xi, X2, --.

[,

4
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Elasticity of Substitution

In the two input ( X x2) case, the marginal rate of techaical substitution (MRS)
may be written

» MRS = s-= dx2 /[dx; = F, [F,

where the suffixes to F denote appropriate partial derivatives.

Writing X = X2 /Xl we have, for variation along an isoquant, the elasticity of

substitution, in the two input case, corresponding to substitutions for a constant output level,
defined by

dx/X .
¢ =Tk :

It can be shown that
3 F| Fy(X; Fi +X, F,)
X, Xo (F; g2 — 2F,, F; F2 - F p)
1 72 i F, 12 =1 22 Fl)

or
& = ; LS ist X2

X1 %9 —y———s

a2 X, dX%

Which is nonnegative and lies between zero and infinity. Also & isinversely proper-
tional to changes in the isoquant slope,

For a homogeneous production function of degree one, it can be shown that ¢ = ¥,
2 /F Fip

If we write y = Q/X1 X = X2/ Xl the formula for elasticity of substitution, instead
of remaining a partial differential equation, can be written as a nonlinear differential equation
& =—V(y=xV)
xyy” ’

This is an extensively used relation in production function studies.

For the n-input production function Q = F X X 2 “"Xn) homogeneous of degres
one, the bordered Hessian may be written . 4
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H= OFl F2 o001 [

F F

iFi1 Fio -
F) F gy Fpp " Foy

1n

F F,F F
n ‘nl "n2 =

Where the suffixes toF show appropriate partial derivatives.

Denoting the cofactor of Fij by Hij we have the Allen partial elasticity of substitution:

between X, Xj given by
€5 ==% F Hy

By s (ji (symmetry), i / j

Using Euler’s thorem,
“i 'xQ."x". —IEIIﬂ
3T
from which the result for the two input case follows easily.

Some Basic Modle

The simplest functional form for a production model is the linear form with two or

n
more inputs. The n input model Q =a + = b Xiisa production function if Q and Xi

1=

are nofi-negative and 6Q/6X = bi > O. The elasticity of substitution is infinity and the
1

output elasticity is unity. This preduction model is not used in practice. It is possible to think
of afirm having only some discrete choices in the matter of inputs, their quantities and  use.

Based on this assumption of constancy of engineering and technological factors that determine

the refationship between inputs we have the Leontief input-output function which is also linear. -

In the two inputcase, let ¢; ¢, stand for the amounts X, X’ nceded to product ooe:

unit of cutput. The Leontief function may be written

Q = min (XI/ ©, Xz/ c2)

~orX[>le, X2> czQ
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Because the two inputs move together the marginal products remain undefined. The

elasticity of substitution is 0. The output elasticity is unity provided X4 / ¢ =Xy / ¢, In

the theory of production functions, the first major contribution was the Cobb Douglas prod-
uction function which has had a long life span and is still being used on a large scale in
spite of a number of other modcls now available.The Leontief fixed proportion case has impo-
rtant applications in a specialised input output framework. A commonly used form in recent

years is the constant elasticity of substitutien (CES) production function which is a generali-
sation of the Cobb Douglas function. The popularity and usefulness of these forms have given

rise to a number of extensions and more complex forms which perform additional roles and
are supposed to have certain desirable properties. Reference may be made to the surveys of
Walters (1963), Hildebrand and Liu (1965) and Nerlove (1967).

Because of their relative simplicity and manageability, the Leontief, Cobb Douglas and
the CES functions have yielded a number of useful and interesting production function stud-

ies. Recently some variable elasticity of substitution (VES) functions have also been used in

empirical work. None of these functions has all the empirically desirable character-estics. Of-

‘ten additional qualities are brought into them at a price which consists of som simplifying and

very likely, unrealistic assumptions. In any case, the mathematical representation of any form
does not have much meaning unless supported by empirical results.

The Leontief function does not allow for substitution between inputs. The capital labo-
us ratio is uniquely determined and has nothtng to do with prices. It means that for any output
there is only one production process. The Cobb Douglas function allows for factor substitu-
tion but the elasticity of substitution is restricted to unity' Along an isoquant, the proportional
change in inputs for a given change in input price is ratio is fixed. This is also the case with

the CES function but the extent of this change isa parameter of the CES function and not

 fixed in advance as in the Cobb Douglas case. The VES function allows the variability along

. an isoquant, of the elasticity of substitution which is proportional to the input ratio. In the

case of more than two inputs, we have the translog production function which is subject to a
mirimum number of prior restrictions and is amenable to tests of degree of returns to scale
and separability.1

We now carry out a brief analysis of the Cobb Douglas function and some other forms
which may be considered as its extensions. Harter-Carter-Hocking’s (1960) Transcendental

1. The restrictions of separability and aggregation can be imposed on the translog function as testable par-
ametric restrictions.

This is a very useful feature for empirical work.
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Production Fuaction. Vinod’s (1972) Homogneous Function of Variable Degree.
Chu-Aigner-Frankel’s {1970) Log Quadratic Law of Production.
Sudit’s (1973) Additive Nonhomogeneous Function.
Janvry's (1972) Generalised Power Production Function.
Kmenta’s (1967) CES Approximation.
Christensen-Jorgensen-Lau’s (1971) Translog Function.
The Cobb Douglas Production Function
The two input Gobb Douglas production function is usually written in the form

B
Q=AKK« L

where K and L stand for capital and labour respectively. Q is the output produced. The-:

function satisfies the neoclassical requirements in that the marginal products are positive:
4Q/8K = % Q/K > 0, $Q/8 L = BQ/L > 0.
2 2 = 2/ 12 _
also 3-Q/3K «( Xx-1)Q/K < 0, 3” 3L“ = B(B-1) QL <O0.
K L
« and B are output elasticities. The returns to scale are given by % -+ B. A is the efficiency
coefficient and « /B is the degree of input intensity. Writing X = K/L, the elasticity of subs--
titution is given by
& = d1InX/dIns = lsinces = 8Q/sL BK
3Q/8K ~ <L

B
Written in the form Q = A st

the Cobb Douglas function involves only technicai vari-
ables. But as it is difficult to measure the physical output Q in suitable units, Q is replaced by
Y, total value of output, or by V, value added. It is difficult to express K, capital assets, in
suitable physical terms and therefore, even K has to be used in value terms. As for the pre °

blem of lack of homogeneity, it is common to all inputs.

The use of money values in place of physical quantities introduces an economic element
into the purely technical relationship of the production function. This is unavoidable in prac-

tice and may be the cause of some differences in conclusions drawn from empirical production

function studies based on the assumption of a purely technical production relation.

If we write « for the output elasticity of X , the n-input Cobb Douglas function may
be written i i
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< o« «
Q=AX 1X 2 X n

| D s n
Mso NQfhx = < QX o OmdWopXE T (%i.he<o,
i 1 1 1 = m——— e
Xi
fori=1,2,...... ....,n.The returns to scale is given by = % and i) = 1, ifj.

With the constraint « 4 B =1, the Cobb Douglas function with two inputs K and

1. may be written as a productivity relation between average productivity and capital inten—

sity. The assumption of constant returns to scale made here may or may not be true. Dividing

the unrestricted Cobb Douglas equation throughout by L, we have

< 1-B
Q/L A K /L

A(K/L) < since < + B =1

To test the hypothesis of constant returns fo scale, that is. to test « +B=1, the rela~

tion may be written
QL = A (K/L)y < L « 4 B-1

The significance of the coefficient of L can be used to verify the hypothesis that ¥ +B

adds up to unity.

The Extension Procedure

We now introduce additional explanatory factors into the Cobb Douglas relation, K,L

is a good explanatory factor and may be introduced into the Cobb Douglas function. But since

it leaves the latter unaltered in form, a term like (In K/L)2 may be used in the log linear Cobb
Douglas relation. This gives rise toa new productivity relation which happens to coincide

with an approximation by Taylor’s expansion of the CES as well as the VES functions. The

CES approximation is usually called Kmenta approximation,

From the procedur just mentioned it can be seen that the introduction «f an additional

£ ctor into an existing form gives rise to @ new form of production function. The resulting

form may not necessarily continue to retain the original properties like those of homogeneity
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or constancy of returns to scale or unitary elasticity of substitution that may be present in the

basic form with which we may start.

If to the right hand side of the Cobb Douglas function for n inputs, |

<y & ) < a ‘
Q=AX; X2.....X,
multiplicative exponents of inputs are introduced we get an earlier form of transcendental’
production function given by Harter, Carter and Hocking (1960). There are several nonhomo-
geneous variations of the Cobb Douglas function. Kmenta approximation obtained by adding
(In K/L)2 as an additional explanatory factor to the Cobb Douglas log linear relation results
in a nonhomogeneous function. Another nonhomdgeneous function is that of Vinod (1972)
which is obtained by adding (In K.In L) in the two input Cobb Douglas loglinear relation. In
other words, it is obtained by making each input exponent a linear function of the other input
in the two input Cobb Douglas function. If instead, the exponents are made linear functions of
input ratios, we get Sudit's (19’/3) homogeneous function which results in the addition of three
terms to the Cobb Douglas linear relation, viz (In K)2, (In L) and (In K. In L).If only two ter
ms, viz.,L InK and KinL are added the resulting production function is nonhomogeneous. Other
nonhomogeneous functions which may be considered as some kinds of extensions of the Cobb
Douglas function are those of chu-Aigner-Frankel (1970), Janvry (1972) and the by now quite

famous translog production function of Christensen, Jorgensen and Lau (1971).

Some Extensions of the Cobb Douglas Function

One of the earlier extensions of the Cobb Douglas function was obtained by using g
exponents of inputs as additional multiplicativefactors in the Cobb Douglas form. Harter, »

Carter and Hocking (1960) called it the transcendental production function. It may be written

<1 BIXI «n By X,
Q = A. Xl € vos vee ase Xn c.

In the two input case the marginal rate of technical substitution is given by
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¥he function exhibits nonconstant elasticity of substitution.

It has also the characteristic of allowing marginal products to rise before eventually

falling.

The elasticities of production are given by

E‘=~.ln Q s X, = '<l+Ble

E) = Spp Qv In X5 = <, + By X

So that the scale of production clasticity is
E= <+ %+ 8 X+ 8%
The Harter, Carter and Hocking relation adds a linear function of inputs to the Cobb
Douglas function written in the log linear form
In Q=InA+ 3 %, ln)(i + zBi Xi
The nonhomogeneous production function of Vinod (1972) provides an extension of

the Cobb Douglas function by substituting % and B (of Q=AK < | B) by linear functions

of inputs. * is replaced by a linear function of L and B by a lincar function of K. Thus

Q e AL B (ay + cll“L)L(a2+°2l“K)

This function adds an interactive terms to the linear Cobb Douglas relation which
with 8, = C + ¢, may be written In Q = InA + a, InK + a, InL +ay InK.InL

ay is not significantly different from zero, the Cobb Douglas function is implied.

The output elasticities are given by

E _ & +aan,E L)
L 2 3 K~

and the scale elasticity
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E = E; +Eg = a + ay 4 azInLK
which is variable and dependent on input levels. ‘

If in the elasticity of substitution expression, Allen (1938, p. 342), we substitute

F _(a +alnL)Q/XK,F =(a +a InK)Q/L »
K™ 1 3 L 2 3

S FLEL— 1)/L,2 S e G
F _(EE QL+a Q/LYK=(E E +a)Q/KL
KL= K L 3 KL 3

-Fy Fp (KF

LF KL
we have % ; K .+ L) /

e e e —— P s i S~ =

2 2F F F F .2
FhP-"xL x Lt LFk

al—l— a, -+ a3anL

a; + a, + a4 (2 + ln KL)
which is less than unity if E; + E,, < 0and a, / 0.
L K7 3 >

The function is reasonably nonrestrictive and is a natural generalisation of the Cob?

Douglas function.

If the < and B of the Cobb Douglas function are replaced by log linear functions of
input ratios, we have Sudit’s (1973) Homogeneous production function of variable degres

with variable & elasticity of substitution and returns to scale:

a

cIlnK/L a
i 2 T

Q = AK L

¢ InL/K
2
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It is homogeneous of degree a; L% 4 9 In K/L, and implies that different prod-
uction techniques as reflected by different input ratios generate different scale factors. It
» reduces to the Cobb Douglas from with ¢y = 0O =c 2

For estimation purposes it may be written

- 1nQ=1nA—|—alan—l—azlnL=a121nK]nL

— ¢y (In K)?2— ¢ (In L)2 where a5 = ¢y + ¢

2
orlnQ =InA + a; In K + a, InL4 < (InK InL - (an) -2)
+ ¢y (K InL - (InL) 2y

The output elasticities are given by

EK = 2 4 (c1 + 02) InL - 201 (In K)/K
EL = a, + (cl + Cy )an - 2c2 (In L)/L

The elasticity of substitution
T

LE; - EK KB -- By
+ 2¢, (InK-1 -———I{-ET-

Ey + By + 2c (In L—-1)

= 1if ¢ and C, are zero.

Although it is a more flexible form than the Cobb Douglas function and has variable
elasticity of substitution and returns to scale, it may sufler from the effect of multicollinearity
if K and L happen to be highly collinear. The scale elasticity varies only along the isoquants.

Along the expansion path, this function retains the property of homogeneity.

Sudit’s (1973) additive nonhomogeneous production function (ANH) has a number of

desirable properties. The function written in the general form for two inputs

Q=a1 X1 +a2 X2 -+ alZXI In X2 4+ a21X2 lnX1

has marginal products which are functions of {ke infut ratio 19 and the remaining input
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sQu/X) = a; + apln X,y + 3y X, /X,

2 QX = a, + anln X; + 2y, Xy IX2

This implies that the abundance of a factor lowers its marginal product and the margi-—
nal cost of the other factor rises. The law of diminishing returns is thus satisfied. But the func--
tion is mot necessarily restricted to diminishing returns since

2 .
%Q/X},zx =- 3, X2/ Xf and ;2Q§/X3 = - a12X1 X%

which means increasing returns from both inputs are possible for a5, a,, < 0.

The shift in the marginal product of one input in response to a change in the other in—
dicates the extent of their complementarity or competitiveness;

2
SO S
SRR ot

15%y Xy !

The scale elasticity
X;sQ X 5Q X 424 %
E=EI+E2=Q-TX1Q%X'_2 =1 X Q

which implies returns to scale are variable over the scale of production.
E> 1if a, ) 2 0
B=1if a5 2y = O which means Q = a; X, + a, X,

The ANH function is not constrained to be convex to the origin. The marginal rate of subs-

titution is given by

Xm a, + anX” X2 + a5 Xl

dX, s+ ay Xy [ Xy +apX

" The elasticity of substitution is not constant and the function is a variable elasticity"
of substitution function. We now consider the Chu, Aigner and Frankel’s (1970) log 16 quad--
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ratic law of production. Using L (3> 1) for labour, K (2> 1) for capital and [ g for parame-

ters which are, respectively, the maximising values of the labour and capital inputs that dete-
rmine the highest total output, the Chu-Aigner-Franke 1 (CAF) function may be written

c 8 c N
1 (1-InL/InL) 2 (1-InK/InK)
L K
Q= (1) (%)
or MQ=a+ a; lnL+ ay 0 K-b, (lnL)2 - b, (In K)Z

wherea =TnA~ ¢, In[' - ¢, Ing a; =cha2 2y
by =¢ /Mf b, = 2 /Ing

The Chu-Aigner-frankel (CAF) function is nonhomogeneous and has nonconstant fac-

tor shares. It is obtained by simply adding the squared terms, (In K)2 and (In 1-)2 to the log
linear Cobb Douglas function, and thus belongs to a family of legpolynomials. If we equate
to zero, the marginal preducts

+Q/sL =201 (1-1n L/In f) Q/L, 4 Q/+K = 2¢, (1-In K/In 'ﬁ) Q/K

‘weget L =7 and K = §_Since total output is maximised at this point, T and ¥ may be
called the maximum total productivity parameters. Similarly, since the average productivities
“Q/L and QK are maximised when L = [, 1—1/201 and K = ¢ 1-1 2c2 ¢ and <y are

the maximum average productivity parameters. They determine the maximum average produ-

.ctivities once T and { are fixed. This helps determine the economic region of the production
function.

For the CAF function the marginal product of labour exceeds the average product be-
fore the latter is maximum and is less than the average product after that, so the function
obeys the law of variable proportions. This enables us to categorise the behaviour of input
productivities and hence to determine the most economic region without attaching any signi-
ficance to the symmetry of the stages of production.

The returns to scale are variable according to the values taken by L and K, Replacing
L and K by £k and £K in the CAF function, we have

¢, (1-1n AL/1n {7) ( ¢, (1-Infln
1 .L (KR 2 )

A (KL/1)
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If the inputs are increased by a multiple of £, the cutput increased by multiple of

In £
Z which itself is a function of inputs.

Junvry’s (1972) generalised power production function (GPPF) allows for nonhomogen-
eity and aiso for variability of the returns to scale, marginal productivities, elasticities of pro-
duction, marginal rates of substitution and elasticities of substitution. It includes as special

cases the Cobb Douglas and transcendental production functions.

If £j 1X) and g (X) are polynomials of any degree in the arguments of the m dimensional

input vector, X, the GPF may be written

o
Q=All X, X gX
j=1 7 e

This reduces to the Cobb Douglas form if ¢ j (X) = <jfor all jand g (X) = O. Iff]

(X) = «j forall jand g (X) = 3r o Xp, o the transcendental form results.

The marginal product of factor Xj 18

»Q j $9(X) i (X)

B e = ST 1k
B e Ve o e e

which can assume positive, zern or negative values depending on the specification of the poly-

nomials and hence can describe all three stages of production for g (X) = O.

The CPPF is homogeneous if and only if the polynomials ¢j (X), j = 1,..., m, and g (X)
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_are homogenous of degree zero.
m
(X) are inderendent of X

The function e xhibits variable returns to scale unless all {

which reduces the GPPF to the Cobb Douglas form.

The economic region of production is defined by the set of values of the X’s such that

m
04 3 ,jiX=L
j

In the special two input case
«. 4 B, X
1 N 2 X
Q=AX,

the marginal products are
Qs Xy = X +B X +1X, QX
1 2 1 1 1

3 QX ::(°<2+BX InX)Q/X
2 12 1 2

-(%X +B X y e sQ/yX = O. It is maximum for
1 27 1 1

For X =
1
2 O e _
» QyXl=0OieforX =-(«x +BX -+ < +BX )
1 1 12 1 1 2 1

Thus X has a positive and decreasing marginal product in the interval

1
~—(x +BX -/ 4B X <X <X —r , 4+ B(X)
rl 1 2 1 1 2 1 1L 1 2 2

which is a function ef X2. Also X has a negative marginal product if X exceeds the criv
2

1
ticallevel --B (o« +r X))
1 1 1 1

The eolasticity of substitution of the GPPF is a variable parameter :
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e b(a 4+ h
€ =2=a « 0B X
b 2 1 2
where a = +B X andb = 4 + B X InX i
1 1 2 2 t 2 | |

If B =0, ¢ = ! which is the Cobb Douglas case.
1

If we introduce a suitable multiplicative exponential into Vinod’s (1972) two input non- l
homogeneous production function, an extension of Janvry’s form may be obtained. But the

general form of Janvry's production function allows many more possibilities,

iKmenta Approximation

Kmenta approximation which was introduced as a Taylor series expansion upto the
second order terms of the constant elasticity of substitution (CES) production function, is a
commonly used relation in production function studies. We may look upon it as an obvious
extension of Cobb Douglas function from which it may be obtained by the addition of some
appropriate factors.

It is difficult to linearise and estimate the parameters of the CES function with nonco-
mnstant returns to scale

-v/:

9= L+ (=) K®

orlnQ/L =lInor + (v—l)InL — v f(r
%

fR=InG +1--3) (K/L)_%)

1 2
=f(0) + R f /0) + } R {” (O) when expanded

around % = O with terms of order higher than the second omitted. Since
f(0) =0, (0) = -(1-%) In K/L

2
£ (0)= % (1-%). (In K/L)
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Wc have

2 2
f(R) =) (1—%) MK/L + 128 % (1--5)Ia K/L

If we substitutea =Inr,a =v-1,a =v(l-y), a -1/2vey (lI-5,) we have
2 3

] 1
. . 2
the Kmenta approximationInQ/L =a +a InL+a InK/L+ a (In K/L) [3a)
o 1 2 3
or cquivalently,
2
InQ = a]0+ vdIn K4 v(1-%)InL -1/2% v $ (1-%) (In K-In L)
2
=a-<4+a InK-+a InL+ a (InK-InL)

10 11 12 13
The last term on the right disappears if ¢ = O. The approximation is better with 3

closer to zero. If a13 is not significantly different from zero, the Cobb Douglas form may not

be rejected though the exact situation would be unpredictable as a more general production

function could result if a  is significantly different from zero. Moreover a . also depends on
13 13

s, and 1=% and that makes the test weak.
The estimates of the parameters a and a in (3a) and hence of 4 and < are not inde~

pendent of the units of measurement. 1 So the elasticity of substituticn may be evalvated at

the mean level of a sample. The elasticity of substitution of this function depends on the input
ratio and the function may be said to be homothetic. It may suffice to say that homotheticity

implies that, if the expansion of the last term in the kmenta approximation with fresh coefficients

2 2 2
viz, & (InK/L) = a (nK)-2a InK.laL +a (InL)
3 31 32 33

is tested in a linaer hypothesis framework, itresultsin a =a =a = a . Ifit doss
31 32 32 3

not, a more general nonhomothetic polynomial function deserves to be considered. Specifica-
iy, Kmenta approximation belongs to the special class of homothetic productions in that its
clasticity of substitution depends on the input ratio.

1 At K=L, The approximation is evact. For empirical work the units of K and, L may be so chosen in

the sample as to equate their geometric averages.
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It is not necessary to expand f (]) around § = O. Any other appropriate value may be
taken. But the error of approximation depends on the extent to which the actual value of g
deviates from the chosen value. 1t also depends on the input ratio as well as on the values of #
the other paramcters in the function. The extent of the specification error resulting from the
approximation depends on the closeness of the approximation.

L.

Kmenta approximation of the CES function is linear in all parameters. Thus the beast
linear unbiased estimates can be obtained from it by using ordinary least squares method tho--
ugh the bias may have been caused by the dropping of the higher order terms.

The Translog Production Function

The production function underlying the cost theory is nonhomogeneous. The firm has
increasing returns to scale at low output levels, constant retucns to scale at intermadiate levals
and decreasing returns to scale at higher levels of output. Such a generalisation is rot allowed
by a homogeneous production function. A nonhomogeneous production may allow these varia-

tions.

We have seen that nonhomogeneity can manifest itself when terms of second and hig-
her order are added to the Cobb Douglas function.

A nonhomothetic, generalised formulation of the Cobb Douglas and Km:nta fuactions

may be written
5 I 2 r .
InQ=IA+ XInk+BInL4rKK (InK)* + LL (InL) + KL InK InL)

whose scale elasticity is given by :
E = + B 4+ (2r +r IhkK +@rLlL4+r )InL »
- ; KK KL) ‘ KL

Iy _r =-r1KL 2
The bracketed terms of the scale elasticity vanish if KK — LL 2 in which

case the function has zonstant scale elasticity and b:comss hom>gzaeous. It leads to the

Cobb Douglas function if r = O. Thz fuaztioa c i1 b2 usefu' in t2sting tha  homotheticity
KL
of the Kmenta approximation.

The expresion above is the two inputcase of the Carisiensen; Jorgsnsen and Lau’s
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(1971) translog production function. The translog production function may be considered as
a second order local approximation of some underlying function. 1t has both linear and quad-
catic terms and can admit an arbitrary number of inputs. 1¢ may be viewed as an improved
generalisation of the Cobb Douglas and Kmenta’s CES approximation in that, with more than
two inputs, and under reasonably general conditions it enables us to estimate partial elastici-
ties of substitution among all forms of inputs. In the case of Cobb Douglas an CES functions,
the separability conditions have to be imposed ie., specified a priori. In the translog case they

can be tested.

Suppose there exists a technological relationship for output with three inputs ; capital
«(K), labour (L) and raw material (M), viz.,

an=1nA+F(InK,InL,InM).

For the n input case In Q = In A + FIaX, InX ..., In X ),a second order ‘ Taylor ser-
1 2 1

ies approximation in the neighbourhood about the point with inputs unity results in

n wF nn
InQ—1InA = FCO) + = X + 128 2 InX InX.
i=1 i oln Xi 1) 1 )
2
> F
JInX . InX
i
We have, in the three input case, with suitable notational changes,
F=In g0+ « ImnK+ « InL+ « InM
K L M
2

2 200
4+ 12 (In K) + 12r (ML) + 1/2r (In M)
KK LL MM

4+ r ImKInlL +r InL InM+T InMIn K
KL LM MK

By substitutingIn A + I8« = In A & » wehave
]

(]
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mMQ+InA « + « InK+ ... etc
o K

'

For positive marginal products we must have

In mX = +FlyinX = ¢ +r WnK-+r hL+r InM
» [0 Q i R i i iK iL iM

>Ofori=K L M

For the function to be quasi concave at every data point, the bordered Hessian matrix should

be negative and semidefinite.

It is found that the translog function, being a1 second order approximation and a quadra--
tic, is not globally well behaved. But it may be considered as a good representation of produc-

tion possibilities for most data.

Cobb Douglas Splines

Poirier’s (1974) piecewise splines permit U shaped cost curves and piecewise homothetis:.

city although differentiability of the functions along lines parallel to the input axes is no lon-
ger possible. In the Cobb Douglas function, returns to scale are nonvarying so that the aver--

age cost curve is not U shaped. With the Cobb Douglas splines the structural change and.

behaviour of the function in each piece can be tested.

Let «<i and Bj be positive constants and so chosen as to make the Cobb Douglas spline:
F(K,L)= 0 i K °<i LBj continuous over the positive quadrants formed by the 1J rectan--

gles defined by the knots in the meshes

L= L, <L, <<y-1] K=K, <K, <eky ]

Using the continuity conditions

In Oi 40~ In oij 4+ ( Xi-- Xi+1) In Ki 1=1,2-+++1-1 for all j

fn O j41 =005+ (By— B + 1)l j= 12+, J-1forali,

and defining K = max (In K-In Ki, 0), i=1, 2,....., I-1
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T = max (o L-dn Li, 0) j=1, 2,31

We have for a given O and for all K and L

lui K B L,

1
nFEL=w+ "1k +>1n Lt = 1+z
j=2 j=2

where Xi, Bj, represent changes in the output elasticities of K & L.

For a fixed output level Q = the isoquants over the rectangle [i,j]:
b

-B 1/ i
K=}JQ,L, | Oij
J are continuous though having corners along the grid lines.

They are strictly convex if and only if each output clasticity is a ~ decreasing step func-

tion of its respective output:

®i> Xi4l Bj >Bj +1,i=1, ..., i=0.... ., TL

It can be shown that F (K,L) exhibits increasing returns to scale over all rectangles be-
fow and to the left of rectangle (i,j) and decreasing returns above and to the right of the recta-
‘ble (i,j). Tt is indeed, possible to go for several other extensions and variations of the Cobb Do-
uglas model. There is no doubt that many useful forms and modifications can be examined.

But from a few forms of the production function models given above it can be seen that itis
possible to arrive at a variety of extensions of the Cobb Douglas function by some simple

-contrivances, In particular the addition of new explanatory factors seems to help a2 lot. The
present author carried out a number of empirical studies with several of these and other mod-
-¢ls. The industry data used were from several countries. In most cases it was realised that the
addition of certain variables did contribute significantly to the explanatory power of the model
concerned. At the same time it was found that the use of too many explanatory variables did
not always help much. Several other interesting results were obtained with different models
that were used. For instance, various comparable estimates of elasticity of <ubst1tutlon returns
to scale and other parameters were obtained. 1t is felt that complete reliance on a single form
-of production may sometimes, prove harmful, 1t the resources permit, it is advxsable to try
some alternatives with suitable explanatory variables depending on requirements.
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