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Abstract 

The solutions of  sitnikov's circular restricted three body problem has been tried to obtain by using 

Lindstedt poincare method if the primaries are oblate spheroid. 
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1. Introduction 

 
MacMillan [1] has studied an integrable case in restricted problem of three bodies by imposing further 

restrictions on the restricted three body problem by supposing the two finite bodies of equal masses 

and an infinitesimal body be moving in their common axis of revolution. 

Sitnikov [2] motion in three body problem has two primaries of equal masses and these two moving in 

(i) circular orbits and (ii) elliptic orbits around their center of mass. The third body (infinitesimal 

mass) is moving along a line which is perpendicular to the plane of primaries and passing through the 

center of mass of the primaries. 

Further Hagel [3] have studied a higher order perturbation analysis of the Sitnikov problem and 

investigated the low amplitude bounded oscillatory solutions in full range of primary eccentricities – 

0.99 < e < 0.99. They have found that near integrals in a polynomial form can be obtained for 
sufficiently small oscillation amplitudes in the entire interval of eccentricities. In addition they 

derived a relation for the non-linear frequency of the oscillatory solution as function of e and T0. 

Faruque [4] has studied a new analytic expression for the position of the infinitesimal body in the 
elliptic Sitnikov problem. This solution is valid for small bounded oscillations in cases of moderate 

primary eccentricities. The final solution to the equation with non-linear force included is obtained 

through first the use of a courant and Synder transformation followed by Lindstedt-poincare 
perturbation method and again an application of courant and Synder transformation. 

We have studied the Sitnikov’s circular restricted problem of the bodies when both the primaries are 

oblate spheroids and moving in circular orbits around their centre of mass. The Sitnikov’s problem is 

a special case of the restricted three body problem when both the primaries are of equal masses (m1 = 

m2 = 1/2) moving in circular orbits or elliptic orbits under Newtonion force of attraction and the third  
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body of mass m3 (m3 is much less then the primaries) moves along the line perpendicular to the plane 

of motion of the primaries and passes through the center of mass of the primaries. 

2. Equations of motion  

Here the system consists of two oblate primaries with equal masses (m1 = m2 = 1/2). The third body of 
mass m3 is much less than the masses of the primaries. We know that both the primaries in the 

Sitnikov’s problem move on the circumference of the same circle if the primaries are spheroid in 

shape. But if the primaries are oblate spheroid in shape then due to their oblateness the primaries will 

not be equidistant from their center of mass. To keep the primaries equidistant from the centre of mass 

of the primaries, the following conditions are to be imposed : 

(i)  Principal axes of the oblate bodies should be parallel to the synodic axes. 

(ii)  The masses of both the primaries should be equal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let ai, bi, ci (i = 1, 2) be the semi axes of the primaries. When ai = bi, as the primaries are oblate, then 

the moment of inertia of the oblate spheroid m1 and m2 about the principal axes of body are  
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Thus the potential between two bodies m1 and m2 is given by 
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If op1 = r1 and op2 = r2 and 1̂u  and 2û  are the unit vectors along r1 and r2, then the equation 

of motion of m1 can be written as 
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Similarly from equation of motion of m2, we get  
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As Mccuskey [5] the equations (4), (5) and (6) have the non-trivial solutions if the 2 × 2 
determinant obtained from any two of the above three equations is zero. i.e. 

2

3 5

1 8A
n

r r
⇒ = +  (7) 

Now following Suraj et.al.[6], we can find the equation of motion of the third body as  
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3. Solutions by Lindsted-Poincare Method 

The equation of motion of third body is  
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Since, there is no effect of independent perturbating terms i.e. 15Az
2
, 

4105

2

Az
 and hence they may 

be omitted from the equation (9) 

We get, ( )
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Hence (11) is identity in ε so the coefficients of 2 3 4, , , ,...ε ε ε ε  must be zero. 
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The general solution of the equation (12) is 

 z0 = c1 cos τ + c2 sin τ 

z0 = c cos τ (16)    

From (16),  
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To avoid the secular terms, equating the coefficient of cos τ to zero,  

we get 
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The general solution of the equation (18) is 
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Now following, Raju Ram Thapa et.al.[6],  
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4. Conclusion 

The solution Z of Sitnikov's circular restricted three body problem depends on constant 'C', 

independent variable τ  & oblateness parameter A. The third body moves around the equilibrium 

point. 
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