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Abstract

The exact solutions of nonlinear evolution equations (NLEEs) play a crucial role to make known the
internal mechanism of complex physical phenomena. In this article, we construct the traveling wave
solutions of the Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZK-BBM) equation by means of the
new approach of generalized (G'/G)-expansion method. Abundant traveling wave solutions with
arbitrary parameters are successfully obtained by this method and the wave solutions are expressed in
terms of the hyperbolic, trigonometric, and rational functions. It is shown that the new approach of
generalized (G'/G)-expansion method is a powerful and concise mathematical tool for solving

nonlinear partial differential equations.

Keywords: New approach of generalized (G'/G)-expansion method, ZK-BBM equation;

homogeneous balance, traveling wave solutions, solitary wave solutions, nonlinear evolution
equation.

1. Introduction

Nonlinear phenomena arise in several aspects of physics as well as other natural and applied sciences.
Essentially all the fundamental equations in physical sciences are nonlinear and, in general, such
NLEEs are often very complicated to solve explicitly. The exact solutions of NLEEs play an
important role in the study of nonlinear physical phenomena. Therefore, the powerful and efficient
methods to find exact solutions of nonlinear equations still have drawn a lot of interest by diverse
group of scientists. In the past three decades, there has been significant progress in the development of
finding effective methods for obtaining exact solutions of NLEEs. These methods are the Exp-
function method [1-3], the generalized Riccati equation [4], the Miura transformation [5], the Jacobi
elliptic function expansion method [6, 7], the Hirota’s bilinear method [8], the sine-cosine method [9],
the tanh-function method [10], the extended tanh-function method [11-12], the homogeneous balance
method [13], the modified Exp-function method [14], the (G'/ G) -expansion method [15-22], the
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improved (G'/ G) -expansion method [23], the modified simple equation method [24-28], the inverse
scattering transform [29] and so on.

Recently, Naher and Abdullah [30] established a highly effective extension of the (G'/G) expansion
method, called the new generalized (G'/G) expansion method to obtain exact traveling wave

solutions of NLEEs. The aim of this article is to look for new study relating to the new generalized
(G'/G) expansion method for solving the renowned ZK-BBM equation to make obvious the
effectiveness and usefulness of the method.

The outline of this paper is organized as follows: In Section 2, we give the description of the new
generalized (G'/G) expansion method. In Section 3, we apply this method to the ZK-BBM equation.

In Section 4, Discussions are given. Conclusions are given in Section 5.
2. Description of the new generalized (G'/ G)-expansion method
Let us consider a general nonlinear PDE in the form
d)(v,vt,vx,vxx,v”,v,x,...), (1)

where v =v(x,¢)is an unknown function, @ is a polynomial in v(x,¢)and its derivatives in which

highest order derivatives and nonlinear terms are involved and the subscripts stand for the partial
derivatives.

Step 1: We combine the real variables x and ¢ by a complex variable 7
vix,t)=v(n), n=xxVt, 2)

where V' is the speed of the traveling wave. The traveling wave transformation (2) converts Eq. (1)
into an ordinary differential equation (ODE) for v = v(77) :

l//(V,V,,V",vm,"'), (3)

where  is a polynomial of v and its derivatives and the superscripts indicate the ordinary
derivatives with respect to 7.

Step 2: According to possibility, Eq. (3) can be integrated term by term one or more times, yields
constant(s) of integration. The integral constant may be zero, for simplicity.

Step 3. Suppose the traveling wave solution of Eq. (3) can be expressed as follows:

W) = Y (d+ M) + Y B (d + M) @

where either «,, or [, may be zero, but could be zero simultaneously, o, (i =0,1,2,---,N) and

B (i=12,---,N) and d are arbitrary constants to be determined and M (77) is

M () =(G"/G) )
where G = G(7) satisfies the following auxiliary nonlinear ordinary differential equation:
AGG"-BGG'-EG*-C (G')* =0, 6)

where the prime stands for derivative with respectto 77; A, B,C and E are real parameters.

Step 4: To determine the positive integer N , taking the homogeneous balance between the highest
order nonlinear terms and the derivatives of the highest order appearing in Eq. (3).
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Step 5: Substitute Eq. (4) and Eq. (6) including Eq. (5) into Eq. (3) with the value of N obtained in
Step 4, we obtain polynomials in (d +M)" (N =0,1,2,---) and (d+M)™" (N=0,1,2,--).
Subsequently, we collect each coefficient of the resulted polynomials to zero, yields a set of algebraic
equations for ¢, (1=0,1,2,---,N) and B, (i=12,---,N), d and V.

Step 6: Suppose that the value of the constants ¢, (i=0,1,2,---,N),f, (i=12,--,N),d and V'
can be found by solving the algebraic equations obtained in Step 5. Since the general solutions of Eq.
(6) are known to us, inserting the values of «, (i=0,12,---,N), f, (i=1,2,---,N) ,d and V'

into Eq. (4), we obtain more general type and new exact traveling wave solutions of the nonlinear
partial differential equation (1).

Step 7: Using the general solution of Eq. (6), we have the following solutions of Eq. (5):
Family 1: When B#0, w=A—-C and Q=B> +4E(4A-C) >0,

JQ
G’j 5 \/_ C Slnh[ﬂj-‘rc cosh(n}

M(n)=( Q)
G 2(0 2w
C, cosh @77 +C, s1nh
24
Family 2: When B#0, o= A—C and Q=B +4E(4-C) <0,
[ V=-Q N -
—C, sin n [+ C,cos
v (G'j B -0 24 24 g
—+
() = IRE o = I o (8)
C, cos n [+ C,sin n
24 24
Family 3: When B#0, w=A—-C and Q=B> +4E(4A-C)=0,
G' B C
M(ﬂ)=(—j=—+—2 ©)
G 20 C,+C,n
Family 4: When B=0, «=A4—-C and A=wFE >0,
G’ \/— C, s1nh(\/_77)+C cosh(ﬂn)
A
Mn) = ( j (10)
G) o \/_ . AA
C, cosh(7 n+C, smh(7 1)
Family 5: When B=0, o« =A4-C and A=wE <0,
. A=A -
G\ J-A - C, sin( 1)+ C, cos( 1)
C, cos( 1)+ C, sin( n)

3. Application of the method

In this section, we will put forth the new generalized (G'/G) expansion method to construct many

new and more general traveling wave solutions of the ZK-BBM equation. Let us consider the ZK-
BBM equation,
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v,+v,—2avv, -bv, , =0. (12)

We will use the traveling wave transformation Eq. (2) into the Eq. (12), which yields:

A+V)W' =2avv'-=bVv"=0. (13)
Integrating Eq. (13) with respect to 77 once yields

A+V)v—av’ —bVv'+K =0, (14)
where K is an integration constant which is to be determined.

Taking the homogeneous balance between highest order nonlinear term v> and linear term of the
highest order v" in Eq. (14), we obtain N = 2. Therefore, the solution of Eq. (14) is of the form:

v =a, +a,(d+M)+a,(d+M)* +B(d+M)" +B,(d+M)7, (15)
where a,,a,,a,,f,,, and d are constants to be determined.

Substituting Eq. (15) together with Eqs. (5) and (6) into Eq. (14), the left-hand side is converted into
polynomials in (d +M )N (N=0,12,..... ) and (d +M )7N (N =1, 2,---). We collect each
coefficient of these resulted polynomials to zero yields a set of simultaneous algebraic equations (for
simplicity, the equations are not presented here) for o, «,, «,, B, S, d, K and V. Solving
these algebraic equations with the help of computer algebra, we obtain following:

Set1: K =— J 1A4 (-166°*V’E’0* —8b* VB’ Ew+ A* —b*V>B* + V7> A4* +2v4%),
a.
a =~ IAZ (12bVd*w* +12bVBdw —8bVEw — A> —VA*> + bVB*), V =V, (16)
a

B = 6b2/(2d3w2 +3Bd’w—-2Edw+B’d —EB), d=d, a, =0, a, =0,
aA

B, =— 622/ (d*w* +2bd*w—2Ed*w—2BdE + B*d*> + E*).

a
where w=A—-C,V, d, A, B, C, E are free parameters.
Set2: K =— Z 1A4 (166 V?E*0* —8b*V*B*Ew+ A* —b*V*B* +V?4* +2v4*),

a.
a =~ IAZ (12bVd*w* +12bVBdw —8bVEw — A*> —VA*> + bVB*), V =V, (17)
a
6bV 6bVw’

a, = WE (2dw* + Bw), a, :—7,51 =0, 5, =0.

where w=A—-C,V,d, A, B, C, E are free parameters.

Set3: K =~ 1A4 ((V +1)2 4% — 2560V A*E2w* — 1280V 2B*Ewr —16b*V 2 B),
a.
2
o _((V +1)4> +8bVEw+2bVB?), a, :—6bV‘2‘) L a, =0,V =V,
2a4 aAd
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B, =— 8;:@ (16E°w +8EBza)+B4),,6'1:O,d:—% (18)

where w=A—-C,V, A, B, C, E are free parameters.

For set 1, substituting Eq. (16) into Eq. (15), along with Eq. (7) and simplifying, yields following
traveling wave solutions, if C; =0 but C, # 0; C, =0 but C, # 0 respectively:

v, (7) = a0+ﬂ1(d+2i+2£coth<rn))‘ ﬁz(d+i 2£coth<rn))‘
v, () = ao+ﬁ1<d+2i+2£t h(\/_n))1+ﬂ2(d+2£+@tanh(@f7))2-
o 2w 2A4

Substituting Eq. (16) into Eq. (15), along with Eq. (8) and simplifying, our exact solutions become, if
C,=0but C, #0; C, =0 but C, # 0 respectively:

v, (1) = ao+ﬂ1(d+2£+\/_cot(\/_77))‘ ﬂz(d+2£+J_cot(J_ .
v, (M =ay+p(d+ %—\/_ n\/__U)T + 5, (d + A \/_ \/_ m)~.

Substituting Eq. (16) into Eq. (15), together with Eq. (9) and simplifying, our obtained solution
becomes:

B C, _ B C
Vis (m) = ao+ﬁ1(d+_+—) lJrﬁz(d+_+ 2

M2 N2
20 C,+C,p 20 C1+C277) '

Substituting Eq. (16) into Eq. (15), along with Eq. (10) and simplifying, we obtain following traveling
wave solutions, if C; =0 but C, # 0; C, =0 but C, # 0 respectively:

v (M) =ay+pi(d+ ﬂ COth(ﬂﬂ))_1 +p,(d + ﬂ COth(ﬂﬂ))_z-
@ A @ A
NI JA . AA

vi, (M) = & +ﬁ1(d+—tanh( m)” ﬂz(d+—t nh(— I

Substituting Eq. (16) into Eq. (15), together with Eq. (11) and simplifying, our obtained exact
solutions become, if C; =0 but C, # 0; C, =0 but C; # 0 respectively:

v, (17) =g + By(d + ‘Acot(J_n))‘ ﬂz(d+J_cot(J_ )~
v, (1) = ao+ﬁ1(d—£t (En))’ ﬂz(d—\/_Atan(\/;l_An))z,

where n =x V4.

Again for set 2, substituting Eq. (17) into Eq. (15), along with Eq. (7) and simplifying, our traveling
wave solutions become, if C; =0 but C, # 0; C, =0 but C,; # 0 respectively:
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v, (1) = 2;42 (2bV (B* + 4Ew) + A*(V +1) - 3bVQ coth? (% ),
1 Ja
vy, (17) = — (2bV (B* + 4Ew) + A*(V +1)—3bVQ tanh? (ﬂ ),

Substituting Eq. (17) into Eq. (15), along with Eq. (8) and simplifying yields exact solutions, if
C,=0but C, #0; C, =0 but C, # 0 respectively:

1 V-0
v, (17) = T (2bV (B? +4Ew) + A*(V +1)+3bVQcot? (7 7)),
vy, (1) = ! (2bV (B? + 4Ew) + A>(V +1) + 3bVQ tan* . 7).

2a4? 24

Substituting Eq. (17) into Eq. (15), along with Eq. (9) and simplifying, our obtained solution
becomes:

! (2bV(B* +4Ew)+ A*(V +1) - 12bV0?* (L)2 ),

V. =
25 (77) 2aA2 Cl +C277

Substituting Eq. (17) into Eq. (15), together with Eq. (10) and simplifying, yields following traveling
wave solutions, if C;, =0 but C, #0; C, =0 but C, # 0 respectively:

1
2aA?

> IAZ (bV(-B* +8Ew)+ A2 (V + 1)+ 12bVA(B tanh(%n) — /A tanh? (% 7).
a

Substituting Eq. (17) into Eq. (15), along with Eq. (11) and simplifying, our exact solutions become,
if C,=0but C, #0; C, =0 but C, # 0 respectively:

v, () = (bV(-B* +8Ew) + A (V +1) +12bVJA(B coth(% 1) —~A coth? (% 17))).

vy, () =

vy, (1) = 5 lAz (bV (=B +8Ew) + A>(V +1)+ 126V A (iB cot((—2 77)+\/Xcot2(—°_fn))).
a

v, (0 = 1/12 (bV (~B* +8E@) + A>(V +1) —12bV JA(iB tan(~ ;A 1) — VA tan® (—= ;A ).
a

where 77 = x — V1.

Similarly, for set 3, substituting Eq. (18) into Eq. (15), together with Eq. (7) and simplifying, yields
following traveling wave solutions, if C; =0 but C, # 0; C, =0 but C, # 0 respectively:

3bVQ JQ o 4b,0? JQ

vs (17) = ap — e coth?( Y n)+ 22 tanh? ( Y n).
3670 JO 4b, w* JO

V32 (77):0(0 —2‘17tanh2(2A 77)+ 22 COch(ZA 77)
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Substituting Eq. (18) into Eq. (15), along with Eq. (8) and simplifying, we obtain following solutions,
if C, =0but C, #0; C, =0 but C, # 0 respectively:

3BVQ 5, A-Q 4b,*> 5 A-Q
% =, + cot - tan .
5, (1) = T ( Y ) o ( Y n)

3VQ. 5, -0 4b,0®> 5 A-Q
% =, + tan - cot .
3, (&) = e (2A77) ) (2A77)
Substituting Eq. (18) into Eq. (15), along with Eq. (9) and simplifying, our obtained solution
becomes:

6bVw? C C _
— ( 2+ By (—2—) "
aA C,+Cyn C,+Cyny

vi (M) =a, —

Substituting Eq. (18) into Eq. (15), along with Eq. (10) and simplifying, yields following exact
traveling wave solutions, if C;, =0 but C, # 0; C, =0 but C, # 0 respectively:

Vo =B, £c th(£77)) ﬂz(—B+£C th(£ )2,
aA 20

6bVa) B\/— J_ B A JA

(— —tanh( +5, (—+—tanh( ).

vy (M) = —

vy, () =ay -

Substituting Eq. (18) into Eq. (15), along with Eq. (11) and simplifying, our obtained exact solutions
become, if C;, =0 but C, #0; C, =0 but C, # 0 respectively:

vy () =y - SOV (—B J_cot(J_ ﬁz(—B+\/_cot(\/_f7))‘2

vy () =y - SOV (—B—J_ J_ M—B—Lt <£ )2,

where 77 = x -Vt

4. Discussions

The advantages and validity of the method over the basic (G'/G)-expansion method and the
generalized and improved (G'/G) -expansion method have been discussed in the following.

Advantages: The crucial advantage of the new approach against the basic (G'/G)-expansion
method and the generalized and improved (G'/G)-expansion method is that the method provides

more general and abundant new exact traveling wave solutions with many real parameters. The exact
solutions have its great importance to expose the inner mechanism of the complex physical
phenomena. Apart from the physical application, the close-form solutions of nonlinear evolution
equations assist the numerical solvers to compare the correctness of their results and help them in the
stability analysis.
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Validity: In Ref. [31] Zhang et al. used the linear ordinary differential equation (LODE) as auxiliary

equation and traveling wave solutions presented in the form u(&) = Zai (G'/G)', where a, #0.
Akbar et al. [17] used same auxiliary equation (LODE) and the solution is presented in the form

ué) = Z #, where either e_, or e, may be zero, but both e_, or e, cannot be
i (d+(G'/ G))"

zero together. It is noteworthy to point out that some of our solutions are coincided with previously

published results, if the parameters are taken particular values which validate our solutions. Moreover,

In Ref. [31] Zhang et al. investigated the ZK-BBM equation to obtain exact solutions via the

improved (G'/G) -expansion method and achieved only six solutions (A.1)-(A.6) (see appendix A).

On the other hand, by using the generalized and improved (G'/G) -expansion method, Akbar et al.

[17] obtained nine solutions (B.1)-(B.9) (see appendix B) of the ZK-BBM equation. But in this
article twenty seven exact solutions including (A.1)-(A.6) and (B.1)-(B.2) of the ZK-BBM equation
are constructed by applying the new approach of generalized (G'/G)-expansion method.

5. Conclusion

In this study, we considered the Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZK-BBM) equation.
We employed the new approach of generalized (G'/G) -expansion method for the exact solution to
this equation and constructed some new solutions which are not found in the previous literature. The
method offers solutions with free parameters that might be imperative to explain some intricate
physical phenomena. This study shows that the new generalized (G'/G)-expansion method is quite

efficient and practically well suited to be used in finding exact solutions of NLEEs. Also, we observe
that the new generalized (G'/G)-expansion method is straightforward and can be applied to many
other nonlinear evolution equations.
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Appendix A: Zhang et al. solutions [31]

Zhang et al. [31] established exact solutions of the well-known the ZK-BBM equation by using the improved
(G'/ G) -expansion method which are as follows:

When A —4u >0,

_— —6qu
n -
1S C, sinh— \/ —4uE+C, cosh% 22— 4p§
a(=()+ - (WA —4u)(
22 C2cosh%«/k —4u&+Clsmh%w/7» —4ug
—6bVuA _(AD)
o1 C, sinh%«/?»2—4u§+cl cosh%s/k2—4u§
a(—=(2)+ - (YA —4p) )
22 C, cosh%\/k2—4u§+cl sinh% 22 —dpe
bVAZ +8bVp -V -1
2a ’
where C|,C, are arbitrary constants.
When 2* —4u <0,
w = —6qu
I =
vl > Czsmf\Mu A2 §+C1cosf\[4u k2§
a(—=(2)+ - (ap—-r7 )
22 Czcos%\/4p 7»2§+C1s1n7 Ay — x2<§
—6quk ~(A2)

Czsmf\Mp 7»2§+C1cosf 4p— kzﬁ
Czcos%«Mu X2§+Clslnf\[4u kzﬁ

a(—(%)%( PEY

bVAZ +8bVu-V -1
2a ’

where C,,C, are arbitrary constants.
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When 4> —4u =0,

u —6qu —6qu7»
I = 5 -
a(- ( )+ ( Czé)) a( ( )+a(= ( )+( Czé)) (A3)
bvx2+8pr—V—1
2a ’

where C,,C, are arbitrary constants.

When 2* —4u >0,

.. 1 [ 1 /5
—“3bV(A? —4p) (Cz sth\/A —4pE+C; coshE by _4p§))2
2a C, cosh%,/k2 —4pE+C sinh% 02— apk a4

bV +8bVp-V-1
2a ’

U21 =

where C,,C), are arbitrary constants.

For C, >0, C 12 <C 22 above, then the solutions (A.4) turns into

_ 2 2 2 v C
_ 3bV(; W 2 (\/x 24u§+ g,y DVAIZ4bVu-V 1 £, = tanh” (C_l)’
a

2 2a

2

When A —4u <0,

3bV(k2 441 -C, sm;\Mu k2§+C1 cosf\/4u kzﬁ
U22 (
2a C, cos%\/4u k2§+C1 smf\Mu kzﬁ (A.5)

. 2bVAZ —8bVu+V+1
2a

>

where C|,C, are arbitrary constants.
When A* —4u =0,

2 2
_6bVG, . 20V2 ~8bVu+V +1 a6
a(Cy +C58) 2a

where C,,C, are arbitrary constants.
Appendix B: Akbar et al. [17]

Akbar et al. [17] established a generalized and improved (G'/ () -expansion method and studied ZK-BBM
equation, and obtained following solutions:

When A* —4u >0,
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. —6bV{p? +d(r>d+d> —20d? +2du—22p)}
n-
Bsinh— ! «M —4u§+Acosh ! A2 —4;,1&

Aol 2
a(d—2 4~ (A2 —dn)(
2 2 Bcoshﬂ/x2 4u§+Asmhﬂ/x2—4ug

—6bV {h — d(x2 +2d% —2Ad +2p)}

1 : - (B.1)
Bsinh—+/A2 —4pE + A cosh =A% —4pg
a@-2+ L 6h2 a2 2 )
2 2 Bcosh?/x2 4+ Asmh?/x2 4t
{(bVA? +8bVu—V —1)+12bVd(d—1)
2a ’
where A, B are arbitrary constants.
When A* —4u <0,
- —6bV{n? +d(A2d+ d3 20d? +2dp—2Ap)}
Ip =
a(d_&le( 4u_12 y Bs1nhf\/4u 7»2§+Acoshf\/4u kzé
22 Bcoshﬂ/4p x2§+Asmhﬂ/4u x2§
6bV {ph —d(A? +2d% —20d + 2u)} B2
a(d—Ll( - )(—Bsmhf\/4u x2g+Acoshﬂ/4u ng
2 2 Bcoshﬂmu x2§+Asmhﬂ/4u x%
{(bVA? +8bVu—V —1)+12bVd(d—1)
2a ’
where A, B are arbitrary constants.
When A* —4u =0,
. —6bViu® +d(A*d +d® —20d” +2du—2h)}
3= A B .,
a(d——+( ))
2 "A+BE (B.3)
{(bVA? +8bVu—V —1)+12bVd(d - 1)
2a ’

where A, B are arbitrary constants.

When A* —4u >0,

e = 3bV(7L2 4p) (Bsmh ; (m&) + A cosh ; (ﬂg)
5 =
1 Da Bcosh ; (Mg) + Asinh ; (M@ (B.4)

_2bVA®—8bVp+V+1
2a ’

where A, B are arbitrary constants.
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If B>0, A*> < B? above, then the solutions (B.4) turns into

2 2 2
— A —4 — -V -
3bV(A~ —4p) sec 2( - pé &) bVA“ —4bVu-V 1’

2a 2a

4,4
é:O = tanh I(E)’

U21

When 2* —4u <0,

36V (4u— A7) Bsm—w/4u /12§+Acos—w/4u /12§
(

2a Bcos;w/4y /12§+As1n—\/4,u /15 (B.5)

. 20V —8bVu+V +1
2a ’

u22 = —

where A, B are arbitrary constants.

When A* —4u =0,

2 2
T 6bVB - 2bVA® —8bVu+V +1 ’ (B.6)
a(A+Bg) 2a

where A, B are arbitrary constants.

When A* —4u >0,
—3bV(A2 - 4p)?

1
w1 \/27 Bsmh—«/kz—4u§+AcoshE«/k2—4u§
8a(d =2+ (V27 —4u)( - .
Bcosh?/xz—4p§+Asmh?/x2 4u§
Bsmh%xlkz —4u§+Acosh%\/k2 —4u§
Bcosh%\/kz —4u§+Asmh%\/k2 —4p§

_(2bVA% —8bVuV +V +1)
2a ’

U3l =

6

bv(d——+ ( A2 —4p)( (B.7)

where A, B are arbitrary constants.

When A* —4u <0,
~ 3bV(x2 4p)?

U32——
8a(d_&+l( 4H_}L2)( —Bsmf\Mu }L2§+Acosf\[4p kzé 2
22 Bcos—(«/4u x2§)+Asm (- ng)
bV —Bs1n;(«/4u x2§)+Acos (4 - x2§)

- =T i (B3)

Bcos%(«/4u 22€) + Asin («/4u A2 g)

_ (2bVA? —8bVuV +V +1)
2a ’
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where A, B are arbitrary constants.

When A° —4u =0,
—3bV(A* —4p)* bV . A B

usy = d-Z+(—=)°
3 8a(d—%+(AB SEE 2 CA+Bg
+BE (B.9)
NUSRE: 2bVAZ —8bVuV)

2a

where A, B are arbitrary constants.



