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Abstract
In this study, we investigate numerical simulation models for water flow in variably sat-
urated (unsaturated) soils. These models are crucial for addressing soil-related challenges
and analyzing water-related risks, particularly in the context of water resource management,
soil water-induced disasters, and the agricultural impacts of global environmental changes.
The Richards equation is one of the most widely used models for simulating water flow in
porous media, especially in unsaturated soils. However, as a highly nonlinear parabolic par-
tial differential equation (PDE), it has limited analytic solutions, which often lack precision
in practical scenarios. This necessitates the development of innovative and robust numer-
ical methods for accurate simulations. We introduce a numerical procedure that linearizes
the Richards equation using the Kirchhoff integral transformation, followed by discretization
with various time-stepping schemes. This approach enables efficient and accurate modeling of
water flow. To extend its application, we integrate the numerical solution with a hydrological
infinite slope stability model to evaluate landslide hazards. Specifically, we calculate the factor
of safety index based on an axisymmetric form of the Richards equation, which helps identify
potential landslidenprone areas. Furthermore, our model provides a framework for predicting
landslides by considering the interplay between water flow and the physical, geological, and
topographical characteristics of a landscape. This integrated approach offers valuable insights
for geohazard assessment and the mitigation of water-induced risks.
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1 Introduction

Landslides occur in many regions worldwide, partic-
ularly in mountainous areas. Geologically, the Hi-
malayan mountain chain, stretching approximately
2,400 kilometers, is among the most tectonically ac-
tive mountain ranges on Earth [1]. This vast terrain

is home to millions of people and diverse ecosys-
tems, spanning countries such as Nepal, Bhutan,
northern Pakistan, northern India, and other parts
of Asia. The Himalayan region faces significant
land sliding problems due to a combination of
factors: uneven topography, dynamic geological
structures, fragile and fractured rock formations,
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and heavy, concentrated rainfall during the mon-
soon season. These elements collectively contribute
to frequent and severe landslides, posing substan-
tial risks to lives, infrastructure, and the envi-
ronment in this region. The increasing frequency
of severe and concentrated rainfall events, largely
driven by climate change, has significantly exacer-
bated landslide risks worldwide, including in the
Himalayan region. Heavy rainfall, a primary trig-
ger for infiltration-induced landslides, is a common
occurrence across this mountainous terrain. These
landslides lead to extensive destruction of natural
infrastructure, damage to roads, houses, and other
man-made constructions, and result in substantial
annual economic losses and fatalities. In unsatu-
rated soils, infiltration-induced landslides typically
occur close to the ground surface, where heavy rain-
fall triggers shallow landslides. These shallow land-
slides commonly develop within the vadose zone,
the unsaturated region above the water table, often
destabilizing surface layers in foothill areas. Slope
failure, which governs the stability and instability
of soil surfaces, is closely linked to the infiltration
process. Fluctuations in matric potential within
unsaturated soils play a crucial role in this pro-
cess. As rainfall infiltrates the soil, the resulting
changes in matric potential reduce mechanical sta-
bility, triggering landslides. Understanding these
dynamics is critical for developing strategies to mit-
igate landslide hazards in regions prone to heavy
rainfall. Infiltration-induced landslides in the Hi-
malayas cause severe damage to lives, property, in-
frastructure, and the environment, especially dur-
ing the monsoon season. To address these chal-
lenges, it is essential to examine the factors, under-
lying issues, and environmental impacts associated
with such landslides. The primary cause of these
landslides is surface failure, which is influenced by
the interconnectedness of slope instabilities. Ana-
lyzing slope stability in unsaturated soils is crucial,
as it provides insights into the mechanical behav-
ior of slope materials. A detailed study of these
materials enables the calculation of the factor of
safety (SF ), a conventional measure for assessing
the stability of sliding surfaces along failure planes.
Certain weather conditions, including continuous
and heavy rainfall, rapid snow melt, and abrupt
weather changes, are key drivers of slope instability.
These phenomena are closely tied to fluctuations in
pore water pressure within the soil. During infil-
tration and redistribution processes, such as rain-
fall and post rainfall periods, pore water pressure
exhibits abnormal variations. Increased pore satu-
ration leads to a rise in pore water pressure, which,
when repeated cyclically, reduces the soil’s effective
stress and triggers slope failure. The Richards equa-
tion, a nonlinear partial differential equation, effec-
tively governs these processes and can be applied for

quantitative landslide hazard assessment. By cou-
pling the Richards equation with a slope stability
model, it is possible to develop a robust framework
for analyzing slope failure in relation to weather
data. This integrated approach provides a power-
ful tool for capturing the dynamics of slope stability
under various environmental conditions [2]. The ac-
curacy and reliability of this method depend heav-
ily on the quality and availability of soil parame-
ters, weather data, and the physical characteristics
of the landscape. By incorporating these factors, a
dependable procedure for landslide hazard assess-
ment can be tailored to specific regions, enabling
precise and effective mitigation strategies [3].

In this work, we propose an approach to mod-
eling infiltration induced landslides, focusing on
the critical role of infiltration processes in predict-
ing landslide hazards. To achieve this, the Kirch-
hoff transformed Richards equation [4] is integrated
with the infinite slope stability model [5], provid-
ing a robust framework for landslide prediction.
This approach incorporates various hydraulic con-
ductivity functions, which are experimentally ver-
ified and describe the movement of water through
pore spaces. These functions depend on soil and
fluid properties, such as intrinsic permeability, den-
sity, viscosity, degree of saturation, shear stress,
and strength. The relationships between hydraulic
conductivity and moisture content are captured us-
ing established empirical formulations [6], which are
critical for understanding soil behavior under dif-
ferent conditions. To account for slope stability, a
hydrological slope stability model is coupled with
the nonlinear Richards equation. This integration
enables the development of a comprehensive formu-
lation for assessing landslide hazards. The new for-
mulation emphasizes infiltration-induced landslides
in unsaturated soils and captures the complex in-
terplay between soil moisture dynamics and slope
stability. The validity of the proposed approach will
be tested by comparing its predictions with inter-
polated exact data. Applications and examples will
also be conducted to illustrate the practical utility
of the method, demonstrating its effectiveness in
accurately predicting landslide hazards in diverse
scenarios.

2 Background

This work aims to provide an integrated under-
standing of hydrogeology and the mathematical
framework necessary for studying water flow in un-
saturated soils and infiltration- induced landslide
hazards. A key focus is on deriving water flow rela-
tions for unsaturated soils from fundamental equa-
tions at the pore scale, offering a foundation for
developing governing equations for modeling wa-
ter flow [4]. The study of water flow in unsatu-
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rated porous media requires a well-defined formu-
lation of governing equations, supported by appro-
priate constitutive relationships [6], and accompa-
nied by specific boundary and initial conditions to
complete the model. Typically, water flow through
unsaturated soil is described using the Richards
equation, which is based on semi-empirical foun-
dations first developed by Buckingham (1907) [7]
and later refined by Richards (1931) [4]. Despite
its limitations and drawbacks, the Richards equa-
tion remains the most widely used model for simu-
lating water flow through both saturated and unsat-
urated soils. Its long nstanding history of applica-
tion highlights its significance, particularly in infil-
tration studies across various disciplines. However,
solving the Richards equation is challenging due to
the nonlinearities in constitutive relationships, es-
pecially those involving hydraulic properties. While
analytical solutions exist, they are rare and limited
to specific cases requiring simplifications or substi-
tutions. Consequently, numerical solutions have be-
come the dominant approach, with numerous tech-
niques developed to address these challenges. How-
ever, achieving high accuracy, robustness, and cost
effectiveness remains an ongoing effort. This work
emphasizes the critical role of solving the Richards
equation in understanding complex flow phenom-
ena in unsaturated soils. The discussion extends
to the numerical challenges and computational ad-
vancements required for robust solutions. To ad-
dress these issues, a qualitative analysis is presented
to better understand the behavior of the Richards
equation and its implications for modeling and sim-
ulation. Lots of numerical solution techniques were
employed efficiently to solve the Richards equation
with the use of Newton–Raphson or Picard iter-
ative techniques together with finite difference or
finite element or finite volume approximations. Fi-
nite difference methods were used by Celia and
Bouloutas [8] or Woodward and Dawson [9] or Do-
gan and Motz [10]. Finite element methods are
found in Celia and Bouloutas [8], Lehmann and
Ackerer [ [11], Simunek [12], Forsyth et al. [13],
Katvetsi et al. [14]. Mixed finite elements were
used by Diersch and Perrochet [15], Knabner and
Schneid [16], Chavent and Roberts [17]or Fahs et
al. [18]. Manzini and Ferraris [19], Orgogozo et
al. [20] or Caviedes–Voulli‘eme et al. [21] or C.E.
Zambra et al. [22] were used finite volume method.
Primary variable switching between the pressure
head and water content; upstream weighting of the
relative permeability; methods of lines and trans-
formation techniques were used by Celia et al. [8];
Kirkland et al. [23]; Tocci et al. [24]; Williams et
al. [25]; Mathews et al. [26]; Ji et al. [27]; Li et
al. [28]; Zha et al. [29]; Zhang et al. [30]. Gener-
ally, numerical methods are adopted to the pressure
head–based form of Richards equation in saturated,

unsaturated and for layered soils. However, there
is a poor mass balance for unsaturated soils with
unacceptable time stepping limitations. The meth-
ods which are used in pressure head–based form
are also applied to mixed form of Richards equa-
tion by Celia et al. [8]with a strategy to evaluate
the change in water content over one time step di-
rectly from the change of the pressure head. It was
found that in this strategy, there is a good mass bal-
ance. But according to Kirkland et al. [23] under
very dry initial conditions, there was a CPU effi-
ciency problem in this method. Numerical methods
of the moisture–based form of Richards equation
has a significantly improved performance when the
infiltration phenomenon into very dry soil ( Hills
et al. (1989) [31], Kirkland et al. (1992) [23];
Forsyth et al. (1995) [13]; Zha et al. (2013) [32]).
But the topmost drawback of this method is that
it can be used for simulating water flow in unsatu-
rated region only. To capture and retain the benefi-
ciary of the moisture based method Wu and Forsyth
(2001) [13]; Kirkland et al. [23] and Zeng et al.
(2018) [33] were improved by combining these two.
Kirkland (1992) [23] was introduced a new variable
having different characteristic at unsaturated and
saturated region in which it may be a linear func-
tion of moisture content for unsaturated soil and
a linear function of pressure head for saturated or
nearly saturated soil. For relatively dry initial con-
ditions this method has a very good CPU efficiency
found by Williams et al. (2000) [25]. Moreover,
there should be defined a point in which these two
methods are joined which may directly affect the
accuracy and robustness of the numerical results.

Haverkamp et al. (1977) [6]; Campbell (1985)
[34]; Vauclin et al. (1979) [35]; Ross and Bristow
(1990) [36]; Williams et al. (2000) [25]; Ji et al.
(2008) [27]; Berninger et al(2011) [37]; Zhang et
al. (2015, 2016, 2018) [30]; Li et al. (2016) [28]
used Kirchhoff integral transformation approach to
solve the non-linear Richards equation. Pan and
Wierenga (1995) [38] laid out a special numerical
method to overcome the difficulties of evaluating
the integral in Kirchhoff transformed approach.
A second integral transform formula was intro-
duced by Williams et al. (2000) [25], interpolating
the linear combination of moisture content with
an arbitrary constant and the Kirchhoff integral
transform. Indeed, this method had really a good
efficiency and robustness as compared to others.
To solve unsaturated flow equation with Kirchhoff
transformation Zhang et al. (2015) [30] introduced
a new numerical method as a good name Finite
Analytic Method (FAM). In this method, a local
analytic solution is used to form a set of algebraic
equation on the Kirchhoff transformed variable.
This method established an accurate and efficient
solution. Zhang et al. (2016) [30], applied FAM on
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mixed form of Richards equation. Also Zhang et al.
(2018) [30], extended it into the two–dimensional
Richards equation. However, its good achievement,
the Finite Analytic Method is limited only for ho-
mogeneous porous media soil. Ji et al. (2008) [27],
used the transient pressure head–based method and
compared a steady state solution obtained from
Kirchhoff transformation to a steady–state solution
obtained from time marching scheme. They used
Gardner’s constitutive relationship [39] and their
result showed that the computational cost in unsat-
urated flow simulation can greatly be reduced and
the use of Kirchhoff transformation has great impli-
cation for subsurface water problems. But they only
considered pseudo–heterogeneous layered porous
media and limited it only to steady–state condi-
tions. Although, Kirchhoff transformation method
has some limitations, it seems to be very promising
method for simulation of Richards equation in un-
saturated porous media region. Following into this
method, numerical errors will be reduced effectively
because variations of Kirchhoff head in its integral
nature are much smaller than those in pressure
head. Indeed, when the Kirchhoff transformation
is employed along with some specific constitutive
relations to solve nonlinear Richards equation, a
full linearization of the unsaturated Richards equa-
tion is permitted. This linearization has an ability
of analytic and semi–analytic solutions. Further-
more, Numerical Methods for solving nonlinear
Richards equation are pertaining to specific consti-
tutive relationships. The popular widespread con-
stitutive relationships were developed by Gardener,
van Genuchten, Brooks and Corey and Haverkamp
et al. [6]. Correspondingly, they gave the well
measured relationship between hydraulic conduc-
tivity, pressure and moisture content. For example,
Heejun Suk et al. (2019) [40], obtained a numeri-
cal solution of the Kirchhoff transformed Richards
equation in variably saturated flow in heteroge-
neous layered soil. This method has followed the
Gardener’s relationships and is used to solve the
linearize partial differential equation. Egidi et
al. (2018) [41], used van Genuchten consecutive
relationship for a numerical solution of Richards
equation providing a simple method adaptable in
parallel computing. A constitutive relationship de-
veloped experimentally by Haverkamp et al. were
used by Liu Fengnan et al. (2020) [42]to a lin-
earized finite difference scheme for the Richards
equation under variable–flux boundary conditions.
Among these, a most robust numerical method an
explicit stabilized Runge–Kutta–Legendre Super
Time–Steeping scheme is developed [42]to solve
mixed form of nonlinear Richards equation with no
source and sink terms and with sink terms as evap-
otranspiration [43] numerically adopting the con-
stitutive relationship developed by Haverkamp et

al. [6]. The scheme is based on the natural phenom-
ena taking into account the hydraulic conductivity
as a function of water pressure head as a real situ-
ation with experimental data. Finally, Landslides
in the Himalayan region are driven by a variety of
interconnected processes and causes. The primary
factors contributing to landslide hazards include
geological, morphological, physical, and human-
induced causes. Among these, the foothills of the
Himalayas are particularly vulnerable to landslides
triggered by unusual, heavy, and concentrated pre-
cipitation during the monsoon season. Rainfall is
the most significant triggering factor, with the on-
set of the monsoon frequently leading to widespread
landslide occurrences and disasters. These events
pose severe risks to people, infrastructure, and
ecosystems, affecting countless lives and livelihoods
on both large and small scales throughout the re-
gion. This paper is organized as follows : in section
3, we present the methodology along with Kirch-
hoff transformed axi-symmetrical form of Richards
equation, including the numerical methods based
on finite difference schemes with different time -
stepping and the slope failure models for landslide
stability in unsaturated soils. In section 4, we show
the results of the numerical procedure implemented
in python. In section 5, we discuss the results and
the future development of this work.

3 Methodology

The flow of water in unsaturated soil follows the
Darcy law and mass conservation equation [4].
Thus, the flow phenomena can be expressed by
Richards equation, a highly non linear PDE. How-
ever, the analytical solution of this equation is im-
possible, we established a robust numerical solution
of this equation in (1+1)D and (2+1)D by adopt-
ing different time - stepping schemes and compared
their results and used the appropriate one to find
the factor of safety for the prediction landslide in
the potential landslide area. We have used the
(1+1)D solution for bench marking and obtained
the solution for axi-symmetrical form of this equa-
tion.

3.1 Richards equation

The axi-symmetrical form of Richards equation can
be written as

∂θ

∂t
=

1

r

∂

∂r

(
rK(ψ)

∂ψ

∂r

)
+

∂

∂z

(
K(ψ)

∂ψ

∂z

)
+W,

(1)
where θ(ψ) and K(ψ) represent the moisture con-
tent θ(ψ) and hydraulic conductivity K(ψ), respec-
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tively, and W is the rate of precipitation.
The function θ(ψ) and K(ψ) are taken from

empirical formulas, the Van Genuchten and
Haverkamp et al. models [6, 44, 45] are the most
widely used in scientific computations due to their
formulation by smooth function. Commonly used
versions of these models can be written as:

K(ψ) = Ks

(
1− (αψ)

n−1
)2
/ (1 + (αψ)n)

m/2
,

(2)

θ(ψ) = θr +
θs − θr

(1 + (αψ)n)
m , (3)

where α is the reciprocal value of ψ0, i.e., the air
entry point [46], θs and θr are the saturated water
content and residual water content respectively. Ks

is the value of the permeability when the soil is sat-
urated. m, n are empirical parameters depending
on the soil, also m and n have the relation:

m = 1− 1

n
. (4)

The various hydraulic parameters, e.g., α, θr, θs,
n, Ks, are related to the pore size distribution and
pore geometry, so they ultimately depend on the
soil type and can be determined experimentally by
specific laboratory tests. For implementation and
to improve the results, we used the Van Genuchten
model.

3.2 Linearization Techniques

Applying the Kirchhoff integral transformation in
equation 1, we let h = ψ − z and define:

ϕ(h) =

∫ h

0

K(h′)dh′. (5)

Since K(h) > 0 from equation (2), the function
ϕ(h) is strictly increasing with K(h) = K(ψ). Tak-
ing derivatives of both sides of the transformation
with respect to r and z, we obtain:

∂ϕ

∂r
= K(ψ)

∂ψ

∂r
,

∂ϕ

∂z
= K(ψ)

∂ψ

∂z
. (6)

Again, taking the derivative of equation (6) with
respect to r:

∂2ϕ

∂r2
= K(ψ)

∂2ψ

∂r2
+
∂K

∂ψ

(
∂ψ

∂r

)2

, (7)

and

∂φ

∂z
=
∂φ

∂h

∂h

∂z
= K(h)

∂(ψ − z)

∂z
= K(ψ)

(
∂ψ

∂z
− 1

)
= K(ψ)

∂ψ

∂z
−K(ψ) (8)

Again differentiating of equation (8),

∂2φ

∂z2
=

∂

∂z

(
K(ψ)

∂ψ

∂z

)
− ∂

∂z
(K(ψ)) (9)

Using the equations (6),(8) and (9), the
Richards equation (1), takes the form

∂θ

∂t
=
∂2φ

∂r2
+

1

r

(
∂φ

∂r

)
+
∂2φ

∂z2
+W (10)

with θ(φ) = θ(h). The corresponding initial and
boundary conditions for the transformed equation
(10) takes the following form

.θ(r, z, 0) = φ0(r, z), Rin ≤ r ≤ Rout, 0 ≤ z ≤ Ztop

∂φ

∂z
= q(t), r > 0, z = 0, t > 0

φ(r, Zbot, t) = β(t), r > 0, t > 0
∂φ

∂r
= 0, r = Rout , z > 0, t > 0

.φ(Rin,Z, t) = β1(t), t > 0
(11)

The Kirchhoff transformation transformed the
nonlinear equation (1) to a nonlinear parabolic
equation (10). Also we note that the Kirchhoff
transformation preserves the uniqueness of the so-
lution for the transformed problem.

3.3 Discretization techniques and imple-
mentation

We have the transformed equation is in two differ-
ent state variables. To solve the transformed equa-
tion (10) numerically with the prescribed initial and
boundary conditions (11), it is feasible to have a sin-
gle state variable. For this, and are assumed as
single valued continuous functions of one another,
and arranging these variables as

∂θ

∂t
=

∂θ

∂φ

∂φ

∂t
=

(
1
∂φ
∂θ

)
∂φ

∂t
, ∂φ

∂θ = ∂φ
∂h

∂h
∂θ , (12)

Differentiating (3) with respect to h, we get

∂θ

∂h
= αn(θs−θr)(−m)(1+ |αh|n)−m−1n|h|n−1

∂φ

∂h
= K(h) = K(ψ), (13)

Using (12) and (13), the transformed Richards
equation (10) takes the form

c(φ)
∂φ

∂t
=
∂2φ

∂r2
+

1

r

(
∂φ

∂r

)
+
∂2φ

∂z2
(14)
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where the functional coefficient c depends on
through h as

c(φ(h)) = −α
nmn(θs − θr)|h|n−1

K(h)(1 + |αh|n)m+1
(15)

3.4 Finite Difference Scheme

We set up a two dimensional (r, z ) uniform grid
for an axi symmetric problem in the cylinder geom-
etry by subdividing the radial length [Rn, Rout ]
into Mr subintervals of width ∆r = Rout−Rin

Mr

and the height [0, Ztop] in to Mz subintervals of
width ∆z = Ztop

Mz
. We construct a grid (ri, zj , tn)

with ri = i∆r, i = 0, 1, 2, ....,Mr, zj = j∆z, j =
0, 1, 2, 3, ...Mz, and tn = n∆t, n = 1, 2, 3..., N . Let
φni,j denote φ(ri, zj , tn). The partial differential
equation (14) can be approximated using forward
difference in time and central difference in space as

∂φ

∂t
|(rizj ,tn) ≈

φn+1i,j − φi,jn

∆t
,

∂φ

∂r
|(rizj ,tn) ≈

φni+1,j − φi−1,jn

2∆r
∂2φ

∂r2
|(rizj ,tn) ≈

φni−1,j − 2φi,jn + φni+1,j

∆r2
,

∂2φ

∂z2
|(rizj ,tn) ≈

φni,j−1 − 2φi,jn + φni,j+1

∆z2

(16)

Using a weighted average of the derivatives(
∂φ
∂r ,

∂2φ
∂r2 ,

∂2φ
∂z2

)
at the two time levels, tn and tn+1

and adopting Crank-Nicolson(CN) scheme , equa-
tion (14) can be discretized as

φn+1
i,j − φn

i,j

∆t
=

1

2cni,j(∆r)
2

[
φn+1
i−1,j − 2φn+1

i,j + φn+1
i+1,j

+φn
i−1,j−2φn

i,j+φ
n
i+1,j+

1

2cni,j(∆z)
2

[
φn+1
i,j−1 − 2φn+1

i,j

+φn+1
i,j+1+φ

n
i,j−1−2φn

i,j+φ
n
i,j+1+

1

4ricni,j(∆r)

[
φn+1
i+1,j

− φn+1
i−1,j + φn

i+1,j + φn
i−1,j ] (17)

We collect the unknowns on the left hand side :

−
(
Fr −

F

ri

)
φn+1
i−1,j+(1+2Fr+2Fz)φ

n+1
i,j −

(
Fr +

F

ri

)
φn+1
i+1,j − Fz(φ

n+1
i,j−1 + φn+1

i,j+1)

=

(
Fr −

F

ri

)
φn
i−1,j+(1−2Fr−2Fz)φ

n
i,j+

(
Fr +

F

ri

)
φn
i+1,j − Fz(φ

n
i,j−1 + φn

i,j+1) (18)

where Fr = ∆t
2cni,j(∆r)2 , Fz = ∆t

2cni,j(∆z)2 , F =
∆t

4cni,j(∆r) .

The equation (18) is coupled at the new
time level n + 1. That is, we must solve
a system of (linear) algebraic equations,
which we will write as Ax = B, where A
is the coefficient matrix, x is the vector
of unknowns, B is the right hand-side.

To solve the system of linear equations,
we need to form a matrix system Ax
= B, where the solution vector x must
have one index. For this, we need a
numbering of the unknowns with one in-
dex, not two as used in the mesh. We
introduce a mapping position (i, j ) =
v(i, j ) from a mesh point with indices
(i, j ) to the corresponding unknown p
in the equation system.

p = v(i, j ) = j (Vr + 1) + i, for i = 0,
1, 2, · · · , Vr, j = 0, 1, 2, · · · , Vz,

With this mapping, we number the
points along the radial direction start-
ing with z = 0 and then filled one mesh
line at a time. In another way

p = v(i, j ) = i(Vz + 1) + j, for i = 0,
1, 2, · · · , Vr, j = 0, 1, 2, · · · , Vz.

with r = 0 and then filled one mesh line
at a time. From this we can get the
general feature of the coefficient matrix
obtained from the discretized equation
(18).

Let Ak,l be the value of element (k, l)
in the coefficient matrix A, where k and
l are the numbering of the unknowns
in the equation system. We have Ak,l
= 1 for k = l corresponding to the all
known boundary values. Let k be v(i,
j ), i.e., the single index corresponding
to the mesh point (i, j ). Then, for inte-
rior mesh along with boundary, we have

Av(i,j),v(i,j) = Ak,k = 1 + (Fr + Fz),
Ak,v(i−1,j) = Ak,k−1 = −Fr

Ak,v(i+1,j) = Ak,k+1 = −Fr

Ak,v(i,j−1) = Ak,k−(vz+1) = −Fz

Ak,v(i,j+1) = Ak,k+(vz+1) = −Fz

The corresponding right hand side vec-
tor in the equation system has the en-
tries Bk, where k numbers the equations
with the given boundary values.

The above mention algorithm can be
used to update the transformed variable
φn
i,j

to its value in the next time level φn+1
i,j . But

we cannot advance the algorithm to the next time
level φn+2

i,j without evaluating the function c(φn+1
i,j )
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which requires computing the intermediate variable
hn+1
i,j . For this , we imply the equation (13) which

can be approximated as

hn+1
i,j = hni,j +

φn+1
i,j − φn

i,j

K(hni,j)
. (19)

3.5 Landslide Stability analysis in unsatu-
rated soil

This study focuses on the modeling of infiltration-
induced landslides in unsaturated soils, specifi-
cally analyzing slope stability and instability using
the axi-symmetric Kirchhoff-transformed Richards
equation. The approach considers the variation of
moisture content with water pressure head and vice
versa. Infiltration- induced landslides on ground
surfaces often resemble shallow landslides triggered
by intense rainfall events. The problem is addressed
using an infinite slope model to calculate the safety
factor (SF), which serves as a key indicator of slope
stability. The safety factor is defined as the ratio of
resisting forces that prevent slope failure to driving
forces that cause collapse. As (SF) greater than one
indicates stability, while as (SF) less than one sig-
nals instability. This numerical value acts as a land-
slide hazard index, enabling predictions about the
likelihood of landslides for given topographic con-
ditions. The infinite slope model is adopted due to
its simplicity and effectiveness, especially for shal-
low landslides where the failure plane is parallel to
the ground surface and relatively shallow compared
to the slope length. For inter connected to the
moisture profile obtained from the above solution
schemes we preferred the following hydrological in-
finite slope model

SF =
C

zYtsinβcosβ
+

tanφ
tanβ

+
hθY wtanφ

zYtsinβcosβ
(20)

where C is the effective cohesion, is the moistu-
rity, Yt is the unit weight of the soil, Yw is the unit
weight of the water, is the angle of internal friction,
z is the soil thickness, is the slope of the inclined
surface. The combination of the infinite slope model
(Equation 20) with Richards equation, allows the
landslide hazard evaluation directly from weather
data. In particular, the solution of Richards equa-
tion will be used to obtain information about in
the expression.

4 Simulation Results

4.1 Numerical Setup

To demonstrate the numerical solution of the pre-
scribed model, the numerical process developed in
the above section is written in python and ran on

a laptop with 2.8 GHz Quad-Core Intel Core i7
processor. We considered a specific infiltration ex-
periment in unsaturated soil and observe the cor-
responding outcomes. At first the setup consisted
on a landslide area having dimension 70m × 100m.
The physical constituent of the landslide area is
sandy soil. We use the soil parameters and charac-
teristics relationship between the soil moisture con-
tent () and the hydraulic conductivity K () from the
work of Van Genuchten.

K(ψ) = Ks [1− |∂ψ|n]−
m
2

[
1−

(
||n

1 + ||n

)m]2
(21)

θ(ψ) = θr +
(θs − θr)

(1 + ||n)m
(22)

The simulation starts with a uniform satura-
tion θ = 0.1 cm3/cm3 and a constant water head
ψ = −61.5 cm is maintained at the bottom bound-
ary z = Zbot. For the upper boundary z = Ztop at
the soil surface, a constant flux q(t) = 13.69 cm/hr
for t < 0.7hr and zero normal flux condition for t >
0.7hr is maintained. To compute the approximate
solution using different time-stepping schemes, we
used a uniform spatial step size ∆z = 2 cm in the
axial direction and a step size of ∆z = 2 cm in the
radial direction. The simulation was run for 0.75 hr.

For the infiltration-induced landslide, we inter-
polated the moisture variation obtained from the
above experiment to the hydrological model for sta-
bility analysis. Data was obtained from the Depart-
ment of Hydrology and Meteorology, Government
of Nepal, and field observations in the landslide area
located in Yangbarak VDC, Ward No. 6, Shripung,
Panchthar district. Rainfall data from the region
was applied in our simulation model (Equation 20).

5 Results and Discussion

The axi symmetrical model was employed to sim-
ulate vertical wa- ter infiltration into an unsatu-
rated homogeneous porous medium and to ana-
lyze the landslide hazards, hydrological model was
used. Numerical experiments were carried out by
using sand column (proposed by Van Genuchten.)
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with finite difference schemes(FTCS, BTCS, CN
and RKL). Since we do not have exact solution,
we have used numerical solution obtain from above
(RKL) finite difference scheme for one dimensional
as the reference solution Timsina, R.C et al. [42]
for numerical experiment of two dimensional wa-
ter infiltration. Fig. (2) (a) shows the variation
of volumetric moisture content in sand for one di-
mension, and Fig. 2 (b) shows the comparison of
different time-steeping schemes as discussed in [42].
In this numerical experiment, the function used for
the hydraulic conductivity and the water content
as in one dimensional case were taken from Van
Genuchten [46].

We set the axi-symmetrical form of Richards
equation in an unsaturated flow into a region of
sandy soil. For this, we suppose the domain is spec-
ified to be an annulus, rinner ≤ r ≤ router with rinner
strictly greater than zero, other than a disk. The
annular domain consists of 70 cm in length with
100 cm of annular radius. We suppose it vertically
downward where the z-axis is taken as downward
positive with a constant water head ψ = −61.5 cm
at the left (Dirichlet) boundary condition r = Rin
as dummy. A constant flux boundary condition
(Neumann) on the right r = Rout is taken and a
constant water head ψ = −61.5 cm at the bottom
boundary z = Zbottom. At the upper boundary
z = 0 (the soil surface), a constant flux q(t) = 13.69
cm/hr for t < 0.7 hr and zero normal flux condition
for t > 0.7 hr. The solution domain was meshed us-
ing a spatial step size of ∆z = 2 cm on the axial di-
rection and a step size of ∆r = 2.5 cm on the radial
direction and the simulation was run for 1 hr. The
longitudinal water content profiles and radial water
content profiles at time 0 hr and some other times
are shown in Figure (3) (top). From this figure, it
is possible to note that the residual water content
at the bottom of the annulus is reached when time
t is about 0.50 hr. The moisture content contours
are shown in Figure (4) and corresponding surface
plots of moisture content are in Figure (4) (left).

We observe the flow phenomena and carried out
the variation of water content in the region we have
prescribed. We have interconnected the above re-
sult to the infinite slope model to evaluate the safety
factor. We have measured the slope angle and the
thickness of the unsaturated soil as 300 and 8m.
We use the parameter of effective cohesiveness is
4.4kPa, the frictional angle is 280, the soil unit
weight is 23.4kN/m3. Figure 6 depicts the com-
puted results of safety factor for different pressure
head observed in the experiment. The factor of
safety obtained by the above model demonstrates
the possibilities of surface failure and operation of
landslide hazards. From figure 6 we conclude that
the situation of surface failure may increases when
the level of ground water is increased by heavy rain-

fall meanwhile the pressure head energy increase
and the level of unsaturated region decrease and
the possibilities of landslide increases.

The axisymmetric form of Richards’ equation
was set in an unsaturated flow region of sandy
soil. The domain was specified as an annulus,
rinner ≤ r ≤ router, with rinner > 0. The annu-
lar domain is 70 cm in length and 100 cm in radius.
A constant water head ψ = −61.5 cm was main-
tained at the bottom boundary, while a constant
flux q(t) = 13.69 cm/hr for t < 0.7 hr and zero nor-
mal flux condition for t > 0.7hr were applied at the
soil surface.

The solution domain was meshed with a spa-
tial step size ∆z = 2 cm in the axial direction and
∆r = 2.5 cm in the radial direction. The simula-
tion was run for 1 hr. Figures 4 and 5 show the
longitudinal and radial water content profiles and
the corresponding surface plots.
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The safety factor for different pressure heads
and corresponding moisture content is shown in
Figure 6. The slope angle and thickness of the un-
saturated soil were 30◦ and 8m, respectively. The
effective cohesion was 4.4 kPa, friction angle 28◦,
and soil unit weight 23.4 kN/m3. The results indi-
cate an increased likelihood of surface failure with
heavy rainfall.

Conclusion

The flow of water in unsaturated soil is described by
axi symmetrical Kirchhoff trans- formed Richards
equation (a highly nonlinear degenerate parabolic
partial differential equation) and solved it numeri-
cally and interpolate the result in the hydrological
model for stability analyses for the possibilities of

landslide hazards. Also this work is based on il-
lustrative numerical examples in cylindrical form,
with realistic parameters. We implemented differ-
ent finite difference schemes. The work presented
here describes and verifies the application and accu-
racy of finite difference schemes to simulate flow in
unsaturated porous media in axi symmetrical cylin-
drical formation of the land surface. However, this
work presented a new super time stepping numer-
ical scheme which was able to solve the Kirchhoff
transformed axi symmetrical Richards equation and
the findings are converges to the theoretical anal-
ysis and also the findings are in line with one di-
mensional approaches [42, 43]. Figures 2 and 3 de-
picted that the numerical simulations results for the
same infiltration experiment as in one dimension
imposing, zero flux boundary conditions in the lat-
eral boundary mimic the results from the one di-
mensional model. That is the longitudinal profile
are in line with that of the one dimensional model.
The numerical method is able to handle short du-
ration infiltration and relatively easy to implement.
The interpolated result shows that the prediction of
landslide is possible for the available parameter de-
pending on the constituent of the soil and nature of
the land. This work can be extended to achieve to
accurate prediction of massive landslide to unsat-
urated heterogeneous soils with abruptly changing
wetness conditions.
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