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Abstract

The performance of electrochemical double-layer capacitors (EDLCs) is evaluated by the
capacitance of activated carbon (AC) electrodes. The capacitance of AC electrodes is in-
fluenced by many factors such as precursor type, activation method, pore structure, surface
chemistry and electrolytic properties. In this paper, we present a comparative study of ma-
chine learning based prediction of surface area, mesopore volume and total pore volume of
activated carbon for energy storage applications. The ML models were trained on a dataset of
synthetic data that were generated from the limited number of experimental data and which in-
cluded the activation temperature, methylene blue number and iodine number of the activated
carbon (AC). The best performing ML model was Random Forest and XGboost model. The
results of this study can be used to optimize the production of activated carbon and improve
its performance in energy storage applications.
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1 Introduction

A data based method called the machine learning
algorithm has been applied as a substitute tool to
deal with a number of real-world problems. Creat-
ing models and techniques that enable computers
to learn from data and make predictions or judg-
ments without being explicitly programmed is a key
component of the artificial intelligence field of ma-
chine learning [1, 2]. It is utilized in a variety of
programs, including recommendation engines, nat-
ural language processing, and identifying pictures.
There are various types of machine learning such
as unsupervised machine learning and supervised
machine learning. In supervised machine learning,
the algorithm develops predictions or classifications
based on input data after learning from labeled
training data. Unsupervised machine learning uses
an unlabeled data collection as its foundation [3].

Supercapacitors, also known as electrochemical
capacitors, are an intermediate form of energy stor-
age between batteries and ordinary capacitors. Su-
percapacitors can store more energy than regular
capacitors due to their substantially higher energy
density. Supercapacitors have received a lot of in-
terest recently, due to its potential applications in
a wide range of fields, such as consumer electron-
ics and renewable energy systems. Whereas bat-
teries, store energy chemically, supercapacitors do
so electrostatically [4, 5]. Supercapacitors rely on
the rapid movement of ions to store and release
energy quickly. Larger surface area and appropri-
ate pore volumes enhance the device’s energy and
power density. Optimizing these parameters help
in designing energy storage materials that can store
more energy, charge and discharge faster, and has
improved overall performance and durability in var-
ious applications [6–9].

Fossil fuels can lead to energy crisis due to their
finite supply and environmental impact. Transi-
tioning to renewable energy source is essential to
mitigate these issues. Activated carbon is highly
porous form of carbon with a large surface area.
Activated carbon (AC) is prepared from various
carbonaceous material such as peat, wood, etc. In
this study, the methylene blue number (MBN), io-
dine number and temperature were utilized to pre-
dict the surface area, mesopore volume, and total
pore volume of produced activated carbon by using
machine learning algorithm [10, 11]. A larger sur-
face enhances the size of room for interaction be-
tween the electrolyte and electrode material. More
active places for electrochemical processes to take
place can be made possible by this, increasing the
amount of energy stored and accelerating the rate
of charge/discharge. Larger pores called mesopores
allow ions to pass through them and enter and
exit the material [12]. A higher mesopore vol-

ume ensures better ion accessibility and diffusion
within the material, which improves the overall
charge/discharge efficiency and, the device’s power
performance. Total Pore Volume includes all sizes
of pores, from microspores to mesopores. It is a
measure of the overall storage capacity for ions
[13, 14]. This research employs statistical and ex-
perimental data, to assess the most suitable model
for the prediction of more accurate dataset. The as-
piration is to employ machine learning techniques
which enhance comprehension of the interplay be-
tween different aspects of activated carbon and sur-
face area, mesopore volume and total pore volume.
This, in turn, will streamline and enhance the pre-
cision of experimental guidance for future experi-
ments [15,16].

1.1 Machine Learning Models

There are different types of machine learning mod-
els that can be used to predict the electrochemi-
cal properties of activated carbon and its features,
as they can capture the non-linearity in the data.
Among all these models, we selected those that were
most suitable for our data type so that we can pre-
dict the electrochemical features of the AC with
high degree of accuracy. Various studies like that
of Ziang, Su, Wang, Donthula has been done in the
use of machine learning for prediction of different
types of properties of activated carbon [17].

2 Materials and Methods

2.1 Experimental

Terminalia chebula seed stones were used for the
preparation of activated carbon(AC). Terminalia
seeds were collected from the market and cleaned to
remove any impurities. Phosphoric acid was used
as an activating agent. Terminalia seeds powder
was mixed in a phosphoric acid solution. The im-
pregnation process ensured that the seeds powder
absorbed the acid solution uniformly. The impreg-
nated powder was subjected to tubular furnace,
typically in the range of 400°C- 700°C. It helped
in the formation of development of pores and the
removal of the volatile components. The phospho-
ric acid acted as a dehydrating agent and helped
the carbon substance (activated carbon) to develop
holes. To get rid of any remaining acids or other
contaminants, the prepared activated carbon was
thoroughly rinsed with distilled water. The synthe-
sized activated carbon (AC) was analyzed by deter-
mining its iodine number, methylene blue number,
surface area, mesopore volume and total pore vol-
ume [18–20]. We took eight data for each feature
of methylene blue number, iodine number, surface
area, mesopore volume, and total pore volume.
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2.2 Computational

2.2.1 Data Collection

Figure 1: Heatmap of regression values of different
input and output features of AC.

Figure 2: Box plot featuring range of input and out-
put values of features of the AC.

Figure 3: Histogram of all the inputs and output
features.

The data from the experimental method was used
to define the range and variance of each of the re-
sultant values obtained using formulas for specific
capacitance, surface area, mesopore volume, and to-
tal pore volume.

The synthetic data was generated using the al-
gorithm of producing random number but in range
and variance obtained from the experimental data.
The large number of synthetic data generation is
crucial for machine learning as it helps to expand
the dataset, making the model more robust and ca-
pable of better generalization. This broader dataset
can lead to improved training and more accurate
predictions. Machine learning algorithms often re-
quire a significant amount of diverse data to effec-
tively learn patterns and relationships. The details
of the generated data can be studied using the heat
map, the box plot and histogram shown in figure 1,
2 and 3 respectively.

By creating synthetic data that closely resem-
bles the original experimental data, we provide the
algorithm with more examples which will poten-
tially enhance its performance. The large number of
data were generated. To generate a normal random
distribution value firstly, we limited the range of in-
put and out values by using an algorithm function.
Finally, the generated value is scaled to fit within
the range as mentioned above. These techniques
ensured that the synthetic data closely resembles
our experimental data [21,22].

2.2.2 Machine Learning Process

Firstly, the data were checked for missing values
and missing values were computed using mean. In
the following process, firstly the importance of in-
put features and their order of importance were
noted for each output feature as shown in the fig-
ure 3. Methylene blue number was the most im-
portant parameter for the prediction of mesopore
volume followed by temperature and iodine num-
ber respectively. Finally, iodine number, methylene
blue number and temperature in the same order are
important for prediction of total pore volume. To
ensure fair treatment of features, we applied scaling
to bring all the features to a similar scale.

Random Forest model was used to calculate fea-
ture importance. The normalized reduction in the
criterion brought by each feature was guided our
selection process.

A variety of machine learning algorithms were
chosen based on their relevance to the task. The
dataset was partitioned into training and validation
sets in the ratio of 80:20. Subsequently, each algo-
rithm underwent training using the training data,
enabling them to grasp underlying patterns [23].

Analysis of the results provided insights into al-
gorithm performance, guiding the refinement of the
approach for improved outcomes in subsequent it-
erations [24].
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Figure 4: Feature importance of input variables for
output of ‘’Surface Area".

Figure 5: Feature importance of input variables for
output of Total Pore Volume.

Figure 6: Feature importance of input variables for
output of ‘ ’Mesopore Volume’ ’.

2.2.3 Proposed Model Selection

There are several machine learning algorithms that
are suitable for regression tasks. In this paper fol-
lowing machine learning algorithms were described.

Linear Regression

A fundamental approach model connects be-
tween input variable and a continuous output using
a linear equation. Linear regression is a fundamen-

tal statistical method used for modeling the rela-
tionship between a dependent variable and one or
more independent variables. The rationale behind
linear regression is being simple and interpretable
and can be used for robust regression and classifica-
tion tasks. It assumes a linear relationship between
the variables, attempting to find the best-fitting
straight line (or hyperplane in higher dimensions)
through the data points [25]. If the true relation-
ship between the input feature and surface area
is not linear, linear regression may not capture it.
The goal of linear regression is to find the coeffi-
cients that minimize the sum of squared differences
between the predicted values and the actual values
in the training data. This is often done by using
techniques like Ordinary Least Squares (OLS) or
gradient descent [26].

Ridge Regression

Ridge regression, a regularization method in lin-
ear regression, introduces a penalty term based on
the L2 norm of coefficients to mitigate overfitting
and multi-collinearity [27].

Lasso Regression

Similar to Ridge, Lasso adds a penalty, but
it tends to create simpler models by encouraging
some feature contributions to become zero. Both
Ridge and Lasso are used when dealing with multi-
collinear data. Both Lasso and Ridge assume lin-
earity and independence. Regularization helps to
mitigate overfitting, but their performance depends
on the true underlying relationship [28].

Decision Tree Regression

This method dissects data into hierarchical de-
cision structures to predict the target output. A
decision tree is a widely used machine learning
algorithm for both classification and regression
tasks [29]. It is a tree-like model where an in-
put is passed through a series of binary decisions
based on the values of its features. Each deci-
sion node in the tree represents a feature, and the
branches from that node represents the possible
feature values. The leaf nodes of the tree contain
the predicted output or class. When a new input
is given, it traverses the tree based on the feature
values, following the decisions at each node, and
finally arrives at a leaf node that provides the pre-
dicted class (classification) or value (Regression).
Decision Trees tend to over-fit noisy data and fea-
ture importance may not accurately reflect the true
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relevant features of data.

Random Forest Regression

An ensemble technique constructs multiple de-
cision trees and averages their predictions, by en-
hancing accuracy and avoiding overfitting. Ran-
dom Forest is a machine learning algorithm used
for both classification and regression tasks. It is
an ensemble method that builds multiple decision
trees during training and combines their outputs
to make predictions. By introducing randomness
in tree construction and feature selection, Random
Forest reduces overfitting and improves general-
ization. It is a powerful and versatile algorithm
often used for complex datasets and can provide
valuable insights into feature importance. Ran-
dom Forests addresses decision tree limitations by
averaging predictions across multiple trees. They
handle non-linearites better but may still struggle
with subtle relationships [30].

Support Vector Regression (SVR)

Support Vector Regression is to used determine
a regression line that best suits the data, allowing
some flexibility around the line. Support Vector
Regression (SVR) is a machine learning algorithm
that is used for regression tasks. It is an exten-
sion of Support Vector Machines (SVM) and is
particularly useful while dealing with continuous
or numeric target variables. SVR works by finding
a hyperplane that best fits the data points which
minimizes the error within a certain margin.SVR
uses different kernel functions (such as linear, poly-
nomial, radial basis function, etc.) to map the
input data into a higher dimensional space, which
can help to capture complex relationship between
variables. SVR can model non-linear relationships
effectively. The choice of kernel function impacts
the performance [31].

Gradient Boosting Regression

An ensemble strategy that sequentially builds
weak learners, with each one rectifying the errors
of its predecessor. Gradient boosting adapts well
to complex patterns but might over fit if not tuned
properly.

Cat Boost Regression

A gradient boosting algorithm proficient in
handling categorical features; can be configured

to run without displaying training progress. Cat
Boost is a gradient boosting machine learning algo-
rithm which particularly well suits for categorical
features. It stands for "Categorical Boosting."
similar to other gradient boosting methods, Cat
Boost also builds an ensemble of decision trees to
make predictions. Cat Boost also includes features
like automatic handling of missing values, built-in
cross validation, and the ability to monitor train-
ing progress. It has gained popularity for its ease
of use, efficiency, and competitive performance on
various machine learning tasks [32].

XG Boost Regression

Another robust gradient boosting algorithm de-
signed to overcome limitations of traditional gradi-
ent boosting. It is important to assess dataset size,
feature complexity, interpretability, and computa-
tional resources while choosing the most suitable
algorithm for research paper.

2.2.4 Model Evaluation

In this research, a comprehensive evaluation of the
model’s performance is carried out to assess its gen-
eralizability and stability. The technique of cross-
validation is employed, which involves partitioning
the dataset into subsets for both training and vali-
dation purposes. This allows us to test the model’s
ability to perform consistently across different sub-
sets of data, ensuring that it can handle a vari-
ety of scenarios effectively. To gauge the accuracy
and reliability of the model, appropriate evaluation
methods are applied. These methods could encom-
pass metrics such as Mean Squared Error (MSE),
Root Mean Squared Error (RMSE), Mean Absolute
Error (MAE), and possibly more domain specific
metrics tailored to the nature of the dataset. These
metrics collectively offer insights into the model’s
predictive performance and its closeness to the ac-
tual experimental data [33] A crucial aspect of this
analysis involves a comparison between the actual
experimental data and the model’s predicted values
for specific characteristics like capacitance, surface
area, mesopore volume, micro pore volume, and to-
tal pore volume. By contrasting these values, re-
searchers can quantify the model’s accuracy in pre-
dicting intricate material properties. The degree
of agreement between the predicted and actual val-
ues will offer insights into the model’s capability
to capture the underlying relationships within the
data. In the context of Terminalia chebula seeds,
the effectiveness of the model in predicting the ma-
terial’s characteristics is a focal point of analysis.
The findings obtained through rigorous evaluation
methods shed light on how well the model can cap-
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ture the nuanced features of the activated carbon
derived from these seeds. Researchers will interpret
the results to discern the strengths and limitations
of the model in reproducing the complex properties
of the material. This interpretation forms a critical
part of the paper, as it guides the reader in under-
standing the implications of the study’s outcomes
and its broader implications for the field. CatBoost
and XGBoost combine ensemble power with cat-
egorical feature handling. They perform well but
require tuning [34,35].

2.2.5 Model Evaluation Parameters

In the field of predictive modeling and statistical
analysis, the selection of appropriate performance
metrics is of paramount importance. This choice
determines how effectively a model’s predictions
are evaluated and compared against actual values.
Four commonly employed metrics for this purpose
are Mean Squared Error (MSE), Root Mean Square
Error (RMSE), Mean Absolute Error (MAE), and
R-squared [36].

Mean Squared Error

Mean Squared Error is a widely utilized metric
that quantifies the average squared differences be-
tween the model’s predicted values and the actual
observed values. By squaring the errors, MSE em-
phasizes larger deviations and penalizes them more
than smaller errors. This characteristic makes MSE
sensitive to outliers and may lead to models that
are overly focused on minimizing large errors [37].
The following formula is used to calculate the mean
squared error:

MSE =
1

n

n∑
i

(Yi − Ȳ 2) (1)

were, MSE= Mean squared error
n= number of data points
Yi= Observed values
Ŷi= Predicted values

Root Mean Squared Error

Root Mean Square Error is derived from MSE,
RMSE is the square root of the average of squared
errors. It has an advantage of presenting errors in
the same unit as the target variable, making it more
interpretable. RMSE offers insights into the spread
or dispersion of prediction errors. While it retains
the sensitivity to outliers, the square root trans-
formation mitigates the influence of extreme val-
ues [38, 39]. The formula to calculate root mean
square error is given as:

RMSE =
√
MSE (2)

Mean Absolute Error

Mean Absolute Error calculates the average of
the absolute differences between predicted and ac-
tual values. Unlike MSE, it treats all errors equally,
making it less sensitive to outliers. This character-
istic makes MAE a favorable choice where outliers
should not disproportionately affect the evaluation.
However, it may lack the emphasis on larger errors
that MSE provides. The following formula used to
calculate the mean squared error:

MAE =

∑n
i (Yi − Ȳi)

n
(3)

where,
MAE=Mean absolute error
yi=Prediction
xi= True value
n= Total number of data points

R-squared

R-squared measures the proportion of the vari-
ance in the dependent variable that is explained by
the independent variables in the model [40]. It of-
fers insights into the goodness of fit and the model’s
explanatory power. Higher R-squared values indi-
cate a larger portion of the variability in the data
is accounted by the model. Nevertheless, it is im-
portant to note that R-squared can be misleading
when applied to complex models, as it tends to in-
crease with the addition of more variables, even if
they are not meaningful [40]. The following formula
used to calculate the R-squared:

R2 = 1− SSR

SST
(4)

While selecting the appropriate metric for eval-
uating a model’s performance, researcher’s must
consider the nature of the data, the goals of the
analysis, and the desired balance between sensitiv-
ity to errors and robustness to outliers [41]. In
many cases, a combination of these metrics can pro-
vide a more comprehensive assessment of a model’s
strengths and weaknesses, contributing to a more
thorough and nuanced interpretation of results.

3 Results and Discussion

3.1 Statistical analysis of datasets

Table.1: depicts the entirety of the generated
dataset. Within this dataset, the variables exhib-
ited mesopore volume size ranging from 0.3 to 0.899
cm3/g and surface area from 800.09 to 1999.70
m2/g. To assess the degree of dispersion for each
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variable, we employed mean values and their cor-
responding standard deviations(SD). Additionally,
the range of each variable was captured through the
utilization of minimum and maximum values. Com-
plementing these measures, quartile ranges were
furnished to provide supplementary insights into
the distribution’s central tendency. “SD" typically
stands for "standard deviation," which measures
the amount of variation or dispersion in a set of
values. So, "SD mean" could refers to the stan-
dard deviation of the mean, indicating how much
the average value varies from the overall average.

3.2 Machine Learning Prediction

3.2.1 Model Evaluation

Nine (9) machine learning models were employed
based on the testing dataset. Table.2: displays the
error values for various models, including support
vector re gression, linear regression, ridge regres-
sion, decision tree regression, and random forest re-
gression, together with surface area, mesopore vol-
ume and total pore volume. Table.2: Error values
for the three outputs using different machine learn-
ing models.

3.2.2 Comparative Analysis with Chemical
Methods

We compared ML predictions (e.g. using Random
Forest, Gradient Boosting, etc.) with traditional
methods. ML models outperform traditional meth-
ods due to their ability to capture intricate pat-
terns. ML models benefit from larger datasets,
whereas traditional methods can work with smaller
samples. ML implementation involved computa-
tional costs, but traditional methods required ex-
pensive equipment. ML models handled noisy data
better, but traditional methods were robust even
with limited data.

3.2.3 Hyperparameter tuning

Hyperparameter tuning is the process of selecting
the best combination of hyperparameters for a ma-
chine learning model which optimizes its perfor-
mance in a given task.

Hyperparameters are parameters that are not
learned by the model during training, but rather
set before training begins, such as learning rate,
regularization parameter, number of hidden layers,
etc. The selection of appropriate hyperparameters
can greatly impacts the performance of a machine
learning model. For example, using a high learn-
ing rate may cause the model to converge quickly
but also result in unstable results or overshooting
the optimal solution, while a low learning rate may
cause the model to converge slowly but also result
in more stable and accurate results. Similarly, se-
lecting an appropriate value for regularization can
help to prevent overfitting, while choosing the opti-
mal number of hidden layers or neurons can impact
the model’s ability to learn complex patterns in the
data.

Hyperparameter tuning involves searching
through a range of hyperparameters using vari-
ous techniques such as grid search, random search
and Bayesian optimization to find the combina-
tion that results in the performance on a valida-
tion set. By optimizing the hyperparameters, the
model’s accuracy and generalization ability can be
improved [42].

Hyperparameter tuning in random forest is the
process of finding the optimal values for the hyper-
parameters of the model which maximize its per-
formance on a given dataset. Hyperparameters are
values set before training the model that control its
behavior, such as the number of trees in the forest,
maximum depth of each tree, and minimum number
of samples required to split a node.
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Hyperparameter tuning in random forest is the
process of finding the optimal values for the hyper-
parameters of the model that maximize its perfor-
mance on a given dataset. Hyperparameters are
values set before training the model that control its
behavior, such as the number of trees in the forest,
the maximum depth of each tree, and the minimum
number of samples required to split a node.

For each of the model we have calculated the
evaluation metrics like MAE, MSE etc. and also
the best parameters so that we can get the best
pathway for each model.

4 Conclusion

Fossil fuels contribute to air pollution, greenhouse
gas emissions, and environmental degradation. Su-
percapacitors can help to reduce these effects by
providing efficient energy storage and recovery, es-
pecially in applications like electric vehicles and re-
newable energy systems. They can capture and re-
lease energy quickly, minimizing the need for con-
stant fossil fuel consumption. Using supercapac-
itors can lead to cleaner air and reduced carbon
emissions, promoting a more sustainable energy
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landscape. A model that predicts the surface area,
mesopore volume and total pore volume of bio-
based activated carbon was created using various
machine learning algorithms. The machine uses
the input features namely temperature, methylene
blue number and iodine number, and the test cir-
cumstances. The prediction performance of the
Random Forest Regressor and cat Boost Regressor
models was superior than that of the ANN, Ridge,
MLP, GBR, DTR and SVR models. The multi-
faceted correlations between input parameters such
iodine amount and Methylene blue number and out-
put variables include surface area, mesopore vol-
ume, and total pore volume have been studied us-
ing machine learning (ML). In addition, ML might
be used for generating models for prediction that
includes surface area, mesopore volume, and total
pore volume. By using surface area, mesopore vol-
ume, and total pore volume, machine learning al-
gorithms can assist researchers in choosing the best
model and in enhancing the efficacy and reliability
of the energy storage process.

Machine Learning (ML) is used to analyze the
effects of the input parameters on the basis of value
of surface area, mesopore volume, and total pore
volume, as well as to optimize the required out-
put parameters. We located Random Forest Re-
gressor and XG Boost Regressor models, among
nine different ML methods, are the most suitable
models. Since, produced activated carbon possesses
substantial values for surface area, mesopore vol-
ume, and total pore volume, it can be employed as
an electrode material for energy storage in future.
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