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Abstract

Bagmati river is biologically, geologically, religiously and historically significant among the
river systems of the Kathmandu Valley. The river is affected by five major tributaries, in-
cluding Manohara, Dhobi Khola, Tukucha, Bishnumati, and Balkhu Khola, which significantly
impact the water chemistry inside the Kathmandu Valley. The data of water quality param-
eters pH, dissolved oxygen, turbidity, temperature, oxygen reduction potential, conductivity,
total dissolved solids, salinity among others was collected using fixed sensors (in period of 5
seconds) and mobile sensors (with latitude and longitude) along the river. The observation is
important for two reasons, one because it was collected in real-time and fine scale, which is
not normally possible with traditional ways, and next such observation was done for the first
time in Bagmati River. The aim of this study was to predict water quality parameters of the
Bagmati River using machine learning time series models, specifically ARIMA and LSTM.
The LSTM model was designed with one input layer, one encoder layer, one repeat layer,
one decoder layer, and one output dense layer to separate the output into temporal slices.
Additionally, a DNN model was employed for location-based prediction, utilizing two input
layers for latitude and longitude and seven output layers for the seven water quality parame-
ters considered for study. The models demonstrated promising performance, but further data
collection and parameter variation are recommended for continued optimization.
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1 Introduction

The Bagmati River holds tremendous religious, his-
torical, and ecological significance in Nepal. Orig-
inating from the Shivapuri Hills, this river passes
through the culturally important Pashupatinath
Temple and other areas in the Kathmandu Val-
ley. Unfortunately, the remarkable growth of pop-
ulation and unplanned urbanization in the Kath-
mandu valley has led to severe deterioration of the
Bagmati’s water quality [1]. The water pollution
poses major environmental and health hazards, de-
manding urgent assessment and remediation. Peri-
odic measurement of critical water quality param-
eters like pH, dissolved oxygen, temperature, tur-
bidity etc. provides vital insights into the pollution
levels and overall river health. However, the con-
ventional methods of manual sample collection and
lab-based analysis are extremely time-consuming,
labor-intensive and expensive. The sparse, de-
layed data obtained through traditional monitor-
ing is insufficient to capture the high-resolution
spatio-temporal dynamics of a complex river sys-
tem [1]. Recent technological advances have en-
abled real-time, automatic and fine-scale sensing of
water quality through fixed and mobile probes . Ad-
ditionally, machine learning models like long short-
term memory (LSTM) networks and deep neural
networks (DNN) have shown promise in effectively
analyzing and predicting water quality data . How-
ever, these modern techniques are yet to be im-
plemented or evaluated for Bagmati River. There-
fore, this study aims to implement machine learning
models on this data to predict the water quality
parameters in time and space domain. Successful
implementation of this approach can provide an ef-
ficient alternative to traditional techniques for river
monitoring in developing regions facing resource
constraints. Furthermore, the spatio-temporal in-
sights obtained from data-driven modelling can
strengthen pollution control policies and remedia-
tion efforts for the Bagmati River.

The Bagmati River in Nepal emerges as a criti-
cal focus for management due to its alarming pollu-
tion levels. Stretching approximately 51 kilometers
through the culturally significant Kathmandu Val-
ley and covering a catchment area of around 678
square kilometers, this river holds significant bio-
logical, geological, and historical importance. Un-
fortunately, it has been significantly impacted by
the influx of pollutants from five major tributaries
— Manohara, Dhobi Khola, Tukucha, Bishnumati,
and Balkhu Khola — which substantially alter its
water chemistry. The uncontrolled urban growth
within the Kathmandu Valley has led to the deteri-
oration of the river’s water quality, with untreated
sewage and waste being directly discharged into its
waters. The river has devolved into a repository

for solid waste, untreated domestic, industrial, and
agricultural effluents. Consequently, accurate pre-
diction of water quality parameters at various GPS
locations along the Bagmati River is imperative for
effective pollution management and mitigation.

The research conducted by Adhikari et al. [1] en-
deavors to comprehensively profile and characterize
pollutants in real-time and space. Water quality
encompasses the physical, chemical, biological, and
radiological attributes that define water’s appropri-
ateness for specific applications. Parameters such
as temperature, pH, dissolved oxygen, nutrients,
metals, and pollutants collectively define water
quality and significantly impact aquatic life, ecosys-
tems, and human well-being. This quality is often
evaluated against established standards for various
parameters, including temperature, pH, oxidation-
reduction potential (ORP), electrical conductiv-
ity (EC), resistivity (RES), total dissolved solids
(TDS), salinity (Sal), dissolved oxygen (DO), tur-
bidity (Turb), biochemical oxygen demand (BOD),
chemical oxygen demand (COD), nitrogen, phos-
phorus, and pollutants like PM2.5, CO2, formalde-
hyde, and volatile organic compounds (VOCs).
Each parameter holds a defined range of values
deemed safe for both human and aquatic life. Tem-
perature influences water’s physical and chemical
properties, while pH indicates its acidity or alkalin-
ity. EC and RES reflect water’s conductivity, cor-
relating with dissolved ion concentration. TDS and
Sal measure dissolved solids and salts, while DO is
crucial for aquatic survival. Turbidity gauges water
clarity, with pollutants like PM2.5, CO2, formalde-
hyde, and VOCs emerging as additional concerns.
The present study focuses on key parameters in-
cluding Temperature, pH, ORP, EC, RES, TDS,
Sal, DO, and Turbidity. Utilizing sophisticated
mobile tracers and analyzers, data collection was
conducted along the Bagmati River using a raft-
ing boat, as well as through a fixed sensor system
stationed within the Kathmandu Valley. These sen-
sors recorded real-time data of various physical pa-
rameters, including pH, conductivity, salinity, to-
tal dissolved solids (TDS), dissolved oxygen (DO),
temperature, and turbidity.

Among the 14 designated data collection sites,
the upstream Gokarna site (B-1) represents the
most remote point, situated approximately 8 kilo-
meters from the entry point (Sundarijal) of the Bag-
mati River into the Kathmandu Valley. In this ru-
ral setting, the sources of pollutants are less ap-
parent. Moving along the river, the B-2 and B-3
sites are positioned just upstream and downstream
of the Guheshwori Wastewater Treatment Plant, re-
spectively. These sites encompass a blend of res-
idential and industrial areas, including wool dy-
ing companies, medical colleges, and hotels. While
the wastewater treatment plant treats sewage be-
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fore discharge, pollutants from various sources still
affect the river. The Guheshwori temple site (B-
4) is impacted by activities such as bathing, wash-
ing, and picnicking along the riverbanks. The Gau-
righat site (B-5) captures the influence of local res-
idential areas before the river reaches the revered
Pashupatinath temple. This temple, of great cul-
tural and religious significance, witnesses various
practices such as bathing and rituals, including cre-
mation. Unfortunately, the ash from cremations is
directly released into the river. Pashupatinath tem-
ple (Aryaghat) (B-6) observes the discharge of un-
treated wastewater and effluents from the treatment
plant into the Bagmati river. Tilganga (B-7), just
downstream of the Guheshwori Wastewater Treat-
ment Plant, portrays the aftermath of these dis-
charges. Tinkune (B-8) reveals a disturbing sight
of solid waste and sewer lines leading directly to
the river, resulting in visibly dark and turbid wa-
ter. The subsequent sites (B-9 to B-14) serve to as-
sess the effects of tributaries on the Bagmati River,
with the Thapathali site (R-11) illustrating the wa-
ter quality above the highly polluted Tukucha trib-
utary. Observations at the Shankhamul site provide
insight into daily and diurnal variations before trib-
utaries influence the river.

Adhikari et al.’s research focused on the analysis
of water quality parameters, highlighting the limi-
tations of conventional fixed-point measurements in
capturing spatial and temporal profiles. Collecting
data along the Bagmati River frequently proves to
be both time-consuming and costly. Despite these
constraints, the application of time and space do-
main data modeling could facilitate insightful con-
clusions and support the research objectives. By
leveraging mathematical and statistical techniques,
machine learning analyzes data, identifies patterns,
and enables predictions or decisions based on the
analysis. In a context marked by limited data avail-
ability, models grounded in statistical and machine
learning techniques offer invaluable insights into the
water quality domain.

In this research, insights from the high-
resolution spatiotemporal data are extracted via
statistical and machine learning models. Autore-
gressive Integrated Moving Average (ARIMA) and
Long Short-Term Memory (LSTM) networks are
implemented for accurate time series forecasting of
water quality at fixed locations. Additionally, Deep
Neural Networks (DNNs) are leveraged to elucidate
water quality variations along the river’s spatial
profile.

2 Research Background

Water quality parameter research offers insights
into water resource quality and its implications for
human, aquatic life, and environmental health. By

analyzing parameters such as pH, dissolved oxygen,
turbidity, and nutrients, researchers can pinpoint
contamination sources and assess aquatic ecosys-
tem health [1]. However, data collection is time-
consuming and costly, compounded by complex in-
fluencing factors. Predictive algorithms, like arti-
ficial neural networks and decision trees, are de-
veloped to forecast water quality parameters with
limited data sets [2].

One study employs multivariate analysis (CA,
PCA, DA) to classify river water, demonstrating
the effectiveness of statistical techniques [3]. An-
other study highlights the success of EMD-LSTM
models in predicting various parameters [4]. A
deep learning framework employing LSTM net-
works forecasts water quality parameters based on
historical data [5], and Bi-S-SRU models showcase
higher accuracy [6]. A CNN-LSTM-SVR hybrid
model outperforms traditional methods [7], while
hybrid techniques and preprocessing enhance fresh-
water quality prediction [8].

The application of a BPNN-Kalman filter model
for river water temperature, pH, and DO concentra-
tion prediction proves accurate [9]. NARNET and
LSTM models predict WQI, while SVM, KNN, and
Naive Bayes classify WQI data [10]. Bayesian Un-
certainty Processor enhances deep learning-based
ANNSs [11], and a novel MVD-based framework ex-
pands DNN application even with limited data [12].
DeepST models spatiotemporal data, outperform-
ing baselines [13]. Flow’s influence on water quality
parameters is studied, showing impacts on dissolved
oxygen, turbidity, pH, and ORP [14-18]. These
studies emphasize considering river flow in water
quality assessments, acknowledging its complex re-
lationship.

It is noteworthy that the traditional forecasting
methods have lots of problems, such as low accu-
racy, poor generalization, and high time complex-
ity. To solve these shortcomings, these days some
machine learning based novel water quality param-
eters (WQP) prediction methods, like deep LSTM
learnings and Deep Neural Networks are in prac-
tices [4,6,9,13,19-21]. In the case of Bagmati river,
to our knowledge so far, since there exist no such
sequential time series-based ML modelling studies
except a scenario-based so-called Water Evolution
and Planning (WEAP) [22], this research considers
ML modelling as of its main scope using the follow-
ing methodology.

3 Methodology

The first step involved collecting time series data
related to various water quality parameters of inter-
est. Once the raw data is obtained, it is loaded and
basic exploratory analysis is performed to under-
stand trends, distributions, relationships etc. Next,
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data cleaning tasks are undertaken to prepare the
data for modelling. This includes handling miss-
ing values, removing outliers, and dropping irrele-
vant columns or features. With clean data in place,
models like ARIMA and LSTM can be initialized
with suitable parameters and configurations. The
models are then trained on historic data and val-
idated by testing on a holdout dataset. Training
loops through iterations to minimize the loss func-
tion and update model weights and biases. Val-
idation provides insight into how well the models
generalize. Once the models are trained and vali-
dated, they can be used for one-step or multi-step
ahead prediction on new data. The predictions are
compared to actual values to evaluate model accu-
racy.

In summary, the key steps in the methodology
involve data collection, exploratory analysis, clean-
ing, model development and training, and final pre-
diction. This provides a structured approach to ap-
ply time series modelling for forecasting water qual-
ity indicators. The process aims to build highly
accurate and robust models.

3.1 Environmental Setup

To run the models and other necessary programs,
a dedicated GPU based resource Colab provided
by Google Research was used. Excel was also
used to save and open csv files, and process data.
The libraries keras, tensorflow, statsmodels, pandas
profiling, matplotlib, sklearn, pandas, numpy, and
datetime were used.

3.2 Data Collection and Analysis

Water quality data was collected by Adhikari et al.
at 14 fixed stations along the Bagmati River using
a multi-parameter sensor system. Key parameters
included pH, dissolved oxygen (DO), and temper-
ature. On which, descriptive statistics were gener-
ated using Excel and Pandas. Data was visualized
using Pandas profiling. Data was cleaned by re-
moving outliers and parameters with high levels of
missing data. The final dataset contained pH, DO
and temperature.

3.3 Model Development

An ARIMA time series model was developed us-
ing a grid search to select optimal p, d, q param-
eters based on lowest MSE and MAE. An LSTM
model was developed for time series forecasting, us-
ing encoder-decoder based architecture. A deep
neural network (DNN) model was developed for
spatial prediction at different locations. The model
had four fully connected layers, ADAM optimizer,
MAE as loss function and ReLU activation function
for each layer.

3.4 ARIMA

The ARIMA forecasting equation for a stationary
time series is a linear (i.e., regression-type) equa-
tion in which the predictors consist of lags of the
dependent variable and/or lags of the forecast er-
rors. That is:

Predicted value of Y = a constant and/or
a weighted sum of one or more recent values
of Y and/or a weighted sum of one or more
recent values of the errors.

A nonseasonal ARIMA model is classified as an
"ARIMA (p,d,q)" model, where:

e p is the number of autoregressive terms,

e d is the number of nonseasonal differences
needed for stationarity, and

e ( is the number of lagged forecast errors in
the prediction equation.

U = U+ O1Y—1+GpY—p—1yr—1— ... —0gyr—q (1)

Equation 1 General Equation for ARIMA Model.
¢prepresents the auto-regressive parameters; y rep-
resents the difference terms; ie. if d = 0: y; =
Yy, ifd =1y: = Ye - Yy and so on 6, repre-
sents the moving average parameters; e represents
the error term at each timestamp; p is the con-
stant. The parameters (p,d,q) imply the order of
the model. While selecting the suitable order for
the model, AIC (Akaike Information Criterion) and
BIC (Bayesian Information Criterion) are used to
evaluate the quality of statistical models by balanc-
ing their complexity and goodness of fit. The AIC
is a measure of the relative quality of a statistical
model for a given set of data. It is defined as:

AIC = 2k — 2In(L) (2)

where, k is the number of parameters in the model
and L is the maximum likelihood estimate of the
likelihood function of the model. The AIC balances
the trade-off between the goodness of fit and the
complexity of the model, and the model with the
lowest AIC is preferred.

The BIC is similar to the AIC but places a
stronger penalty on model complexity. It is defined

- BIC = kin(n) — 2In(L) (3)

where, n is the sample size, k is the number of
parameters in the model and L is the maximum
likelihood estimate of the likelihood function of the
model. The BIC is based on the Bayesian approach,
where the model with the highest posterior proba-
bility is preferred. The BIC penalizes complex mod-
els more than the AIC, and the model with the low-
est BIC is preferred.
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Table 1: Order of ARIMA model for various parameters
Parameter | p | q | d
DO 1|1]1
pH 31110
Temperature | 0 | 1 | O
ORP 01110
EC 0111
TDS 0]1]1
The first step converts the dataset into a time validate the model’s performance. The ARIMA

series format by setting the time column as the in-
dex and defining the water quality parameters as
feature columns. This structures the data for tem-
poral modelling. Next, the stats-models library’s
Auto ARIMA capability is leveraged to automati-
cally optimize the ARIMA parameters p, d, and q
based on the data characteristics. The optimized
model order provides the best starting point for
the ARIMA modelling. The dataset is then par-
titioned into separate training and testing sets to

Perform EDA
(ProfileReport () of pandas_profiing
library, descriptive statistics of excel)

Data Cleaning
(remove outliers, missing values,
drop unnecessary columns)

Prepare Models
(ARIMA, LSTM, DNN)
Train & Validate
Models
Make Predictions

Figure 1: Methodology followed in the research.

3.5 LSTM

The LSTM has an input x(t) which can be the
output of a CNN or the input sequence directly.
h(t-1) and c¢(t-1) are the inputs from the previous
timestep LSTM. o(t) is the output of the LSTM for
this timestep. The LSTM also generates the c(t)
and h(t) for the consumption of the next time step
LSTM.

The first step in the LSTM involves convert-
ing the dataset into a time series format by setting
the time column as the index and the water quality
parameters as feature columns. This prepares the
data for temporal modelling. Next, MinMax scaling
is applied to normalize all features to a common 0-1

model is trained on the training data, and the test-
ing data is used to evaluate the model’s accuracy.
The model’s predictions are compared with the ac-
tual data in the testing set to assess its performance.
The mean squared error (MSE) and mean absolute
error (MAE) are calculated as metrics to quantify
the model’s accuracy. These metrics provide in-
sights into how well the ARIMA model predicts the
water quality parameters.

statsmodel
library
-~

set time column as
index & define feature
columns (DO, pH. &
others)

Optimize Order
(pad)
(by Grid Search)

Split Data set into
train & test sets

Prepare & fit the
model

Make predictions

Steps for implementation of ARIMA

Figure 2:
Model.

range, which aids model optimization. The dataset
is then split into training and validation /testing sets
in a ratio suitable for the problem, such as 80:20 or
70:30. With the data ready, the model architecture
is defined by specifying the type and sequence of
layers, like input, hidden and output layers, that the
data will flow through. The TensorFlow library pro-
vides the tools for building and running the mod-
els. The model is then compiled by configuring key
hyperparameters like optimization algorithm, loss
function and metrics for training. This sets up the
model for the training process. The next step is to
fit the compiled model on the training data for mul-
tiple epochs, which trains the model by minimiz-
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ci=a. (WeX xp + U X he_q + b.)
= frreq g

he = op - oc(ct)

f is the forget gate
i; is the input gate

oy is the output gate
¢, is the cell state

he is the hidden state

Figure 3: LSTM input outputs and the corresponding equations for a single timestep.

ing the specified loss function. Finally, the trained
model can be used to generate predictions on new
validation/test data, and its performance evaluated
using metrics like accuracy and loss scores. In sum-
mary, the methodology involves data preprocessing,
model building, training and prediction to develop
a machine learning model for water quality forecast-
ing.

The LSTM architecture consists of an input
layer that accepts sequences of 10-time -steps, with
each step containing 9 input features. This input
layer is connected to an encoder layer comprised of
100 LSTM units. The encoder processes the input
sequence and outputs an encoded sequence. The
encoded sequence is then fed into a decoder layer,

Tensorion
Iibeary
I

sel mé colamn a5
inden & other
paramaters a5
features

Apply Sealing
[Minbgs Scaber)

-

[Dafine time-steps and)
Splt the data set Hure obsenvation
Counits.

[
Muwmnm

ks pradictions

—_—
Prepare & comple model
(spacdy cpbmzes. hsa lunctian and
Evalualn melrics
.’

L

| il the madsl

Figure 4: Steps for implementation LSTM Model.

also containing 100 LSTM units. Additionally, a
repeat vector summarizes the entire input sequence
from the encoder’s final output and provides this
context to the decoder at each time step. Finally,
a dense output layer separates the decoder outputs
into distinct predictions for each water quality pa-
rameter. The model optimizes using the ADAM al-
gorithm combined with a Huber loss function. The
Huber loss provides the benefits of lower sensitiv-
ity to outliers compared to MSE and lower bias
than MAE, as suggested in prior studies. This
LSTM model architecture enables effective learn-
ing of complex temporal relationships and patterns
in the water quality time series data.

Tensarion
Iibeary
I

sel lime column as
index § other
paramaters a5
features

Apply Sealing
(Minbdae Scaler)

-

[Dafing tim-steps and)
Splt the data set fure obsenvation
o0unts

[
Mumnm

mika prodtioni

—_—
Prepare & compie model
(spicdy cobmae. lss hunckon and
Evaliatin melris
.’

| il the madsl
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Figure 5: Steps for implementation DNN Model.
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3.6 DNN Model Training

Models were trained using time series cross-validation with an 80-20 train-test split. Model parameters
were tuned to optimize performance. Techniques like backpropagation and optimization algorithms like
ADAM were used to minimize error and improve model accuracy. Model performance was evaluated

using metrics like MSE, MAE, AIC and BIC.

4 Results and Discussion

The results of the ARIMA and LSTM models for the prediction of water quality parameters are sum-

marized below:

Table 2: Measured and Predicted Values for Parameters at the Two Nearest Locations

Parameter | Measured Value (Blue dot) | Predicted Value (Red dot)
DO 0 0.259856
pH 7.29 7.202224
Temperature 21.64 21.34662
ORP -254.6 -259.856

*

"E e Ran

o.
]
0.
[
0.
L]
[
[
=
[
=
il
[ ]

;;_fll

Figure 6: Plot of DO values collected with mobile sensor along the river.
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Figure 7: Prediction curve: Actual values vs Pre- Figure 8: Prediction curve: Actual values vs Pre-
dicted values of DO (ARIMA).

dicted values of pH (ARIMA).
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Line plot of Predicted vs Actual DO Values
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Figure 9: Prediction curve: Actual values vs Pre-
dicted values of DO (LSTM).
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Figure 11: Epoch wise loss plot for E1D1 LSTM.

Epoch-wise Loss Curve
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Figure 13: Epoch-wise Loss Curve for DNN Model
at 80 : 20 validation split.

4.1 ARIMA Model

The ARIMA time series modeling approach was
able to effectively capture the temporal dynamics in
the water quality parameters. For dissolved oxygen
(DO), the model achieved an RMSE of 0.519, MAE
0f 0.2901 and R2 of 0.9760 on the test set, indicating

Line plot of Predicted vs Actual pH Values

— predicted

i |mmﬁ T — actual

0 50 100 150 200 250 300 350

Time Observations

Figure 10: Prediction curve: Actual values vs Pre-
dicted values of pH (LSTM).

Epoch-wise MAE Curve

1o
—— Training MAE
—— Validation MAE

0.8 4

0.6

MAE

LR

024 . - R

[X)

Figure 12: Epoch-wise MAE curve for E1D1 LSTM.

Epoch-wise Loss Curve (.7:.3)

6000
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5500 —— Validation Loss
5000
4500
, 4000
8
3
3500
3000 {}
2500
2000
——
0 20 40 60 80 100

Epoch

Figure 14: Epoch-wise Loss Curve for DNN Model
at 70 : 30 validation split.

a good model fit with minimal errors. The residu-
als plot showed that most residuals were clustered
close to zero, signifying that the actual values were
close to the predicted values. The model was able
to forecast DO levels reasonably accurately up to
5-time-steps ahead, with errors increasing slightly
for longer forecast horizons. Overall, the ARIMA
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Gy +

e -

Figure 15: GPS points with values measured (blue) and predicted (red) by DNN.

modelling was successful in modelling the temporal
variations in DO and other water quality indicators.

4.2 LSTM Model

The LSTM neural network model demonstrated
promising performance for short-term time series
forecasting across the different water quality pa-
rameters. For temperature predictions, the model
achieved the lowest error with MAE scores ranging
from 0.2649 to 0.2701 across 5-time-units. The er-
rors were higher but still fairly low for other param-
eters like pH (MAE 0.0527 to 0.0586) and dissolved
oxygen (MAE 1.10 to 1.49). The model was able
to learn complex time-dependent patterns in the
data. The epoch-wise learning curves showed that
the model errors stabilized within 30-40 epochs of
training. Overall, the LSTM model provided ro-
bust forecasts for the next 5-time-steps based on
previous lags and long-term temporal contexts.

4.3 DNN Model

The deep neural network model for spatial predic-
tion yielded optimal results with a 80:20 train-test
split, achieving the lowest MAE of around 0.15 af-
ter 30 epochs. The model training curves showed
the validation loss decreasing and levelling off after
30-40 epochs across different data splits. This indi-
cates that the model was able to learn the under-
lying spatial relationships between the location co-
ordinates and water quality parameters. The mul-
tilayer architecture with increasing number of neu-
rons in the hidden layers likely enabled the model
to learn complex nonlinear feature representations.
The model demonstrates potential for accurate pre-
diction of water quality indicators like pH and DO
levels based on the geographic coordinates.

5 Conclusion

This study demonstrated the feasibility of using ma-
chine learning approaches like ARIMA, LSTM, and
DNN models for predicting water quality parame-
ters in the Bagmati River in Nepal. The fine-scale,
real-time observation data collected provides valu-
able insights into the spatio-temporal dynamics of
key water quality indicators like pH, DO, temper-
ature, and conductivity. The ARIMA model was
successfully implemented to capture the temporal
patterns in parameters like DO and pH. The LSTM
model also showed promising results for short-term
time series forecasting of multiple water quality
variables. The location-based DNN model achieved
reasonable performance in predicting water quality
parameters based on geographic coordinates.

However, the limitations of the current dataset
underscore the need for expanded data collection
across wider spatial and temporal scales, as well as
inclusion of more water quality indicators. Address-
ing these limitations through continued research
will further enhance our understanding of the intri-
cate relationships between various natural and an-
thropogenic factors influencing river water quality.
Incorporating turbulence data along with spatio-
temporal coordinates could have enabled examin-
ing the fluctuations in water quality parameters
as water flows through different regions over time.
Availability of extensive datasets capturing turbu-
lence, timestamps, and locations would have facili-
tated developing enhanced forecasting models and
uncovering significant dynamic patterns and trends.
Specifically, analysis of how turbulence impacts var-
ious quality measures could lead to more sophisti-
cated models and insights. However, investigating
the role of turbulence poses certain challenges such
as complex measurements and simulations. Never-
theless, accounting for turbulence remains an im-
portant consideration for future work to advance
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understanding of aquatic systems and devise opti-
mal water resource management strategies. While
turbulence incorporation was beyond the scope of
this study, addressing the associated difficulties and
limitations in follow-up research could significantly
improve water quality assessment capabilities.

Nonetheless, this study represents an important
step towards leveraging advanced ML techniques
for developing accurate, real-time water quality
monitoring systems. The model frameworks pre-
sented can inform future efforts to build intelligent
decision support systems for water resource man-
agement, pollution control and remediation in the
Bagmati and similar river ecosystems.
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