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ABSTRACT

The objective of this work is to calculate the energy eigenvalue for q-deformed
Hulthen potential using a Gaussian hypergeometric function with centrifugal
approximation factor and related thermodynamical properties. For this, we
develop a mathematical model using the Schrodinger wave equation to find the
energy eigenvalue. In addition, the thermodynamic parameters were also
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calculated for g-deformed Hulthen potential using the partition function. The

Keyw_ords: energy eigenvalue for quantum numbers n=1 to n=5 was observed for screening
Gaussian parameters 0.1, 0.5, and 1. In between, 0.1 to 1 and n=1 to n=2 the energy
Hypergeometric Function eigenvalue ranges from -1.048 to -208.572. The energy eigenvalue for
Thermodynamic Properties considering potential shows that decrease with increasing the quantum number
Partition Function which means electron are loosely bounded nucleus in an atom. Also, the
Nuclear Physics vibrational mean energy, vibrational mean free energy, vibrational specific heat

capacity, and vibrational entropy are obtained but due to complexity, the
further development of the equation is the limitation of this work.
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1. Introduction

Deformation Hulthen Potential (HP) with g-deformation is
well-defined as
Voe—ZaT
O =y
Here V, = Ze?a is known as coupling strength, and « is the
screening parameter [1-5]. HP has introduced to studies the
detail of deuteron and has extensive applications in physics
like Nuclear physics, particle physics, Atomic physics,
Condensed Matter Physics, etc.). HP is one of the short-range
potentials like Yukawa potential, which behaves as a Coulomb
potential at a small distance and exponentially decreases with
increasing the distance from the nucleus. For spin-zero
particles, Klein-Gordon uses HP for their equation to solve as
exp( )
—exp(-)
Different methods like the asymptotic iteration method,
supersymmetry method, shift N1 expression, factorization
method, Nikiforov-Uvarove, etc., are used to calculate energy
eigenvalue for further potential. The g-deformed HP and
modified inversely quadratic Yukawa (QDHMIQY) potential
can be represented as,
Voe—Zar Vle—Zar

V() = - 1—gqe2ar 12
Here V,, V3 ,and q are coupling strength and deformation
parameters, respectively. Such potential is used to describe
different interactions such as nucleon-nucleon interactions,
meson-meson interactions, the various field of nuclear
physics, and quantum chemistry (Hulthen, 1942 and Tencan &
Sever, 2009).
1.1. Differntent method to calcaulte energy eigenvalue
1.1.1.  Asymptotic iteration method
This method is used to solve homogenous linear second-order
differential equations defined as,
¥ = Ae(x)y" + so(x)y, here Ay(x) and sy (x) function in
Co(a,b). On taking (n+1)™ and (n+2)™ derivative, we get,
yY = 2 ()Y +spa(x)y and y™HD = 2,0y +
sp(x)y. Here A, = A1 + Sp—1 + AoAp—q and s, = 554 +
SoAn—1. ON taking the ratio of (n+2)™ and (n+1)"and applying
the asymptotic condition =& = 32 .= ¢, the condition gives

n An-1

the eigenvalue of the considered equation, and we obtained
X
y™(x) = Ci A exp <f (a+ Ao)dt>

This equation yields the solution of the asymptotic consider
equation as

x t
y(x) = [CZ +C; f exp (f (Ao(T) + Za(T))d‘L') dt]

1.1.2. Nikiforov-Uvarov
This method is used to solve the solution of an equation (e.g.,

Schrodinger) by transformation as w”(s)+@¢’(s)+

a(s)
:z((ss))lp(s) = 0, Here %(s) is polynomial of degree at most one,
o(s) and &(s) are second-degree polynomials. On applying
the condition of A = A,, one can obtain the energy eigenvalue.

Here 2= k_ +m'(s) and A, = —nt'(s) = 2079 7(s)
is also polynomial with four values obtained by comparing the
standard equation.

1.1.3.  Supersymmetry method

To calculate the energy eigenvalue, this method assumes a
particular type of wave function s = exp[f Wo(r)dr +
ﬁ(r)]¢s(r), here Wy(r) is supersymmetry in quantum
mechanics assumed as Witten superpotential, ¢¢(r) is a new

e~ o7

V(r) = —Za Or V(r)=-Ze%5

1—e-07

166

function, and B(r) is also a wave function that leads to correct
asymptotic value. As we knew Schrodinger equation is used to
obtain the energy Eigenvalue by replacing the general wave
function by i, and solving similar to the conventional
method, we get energy eigenvalue for any potential.

1.1.4.  Factorization method

In this method, the wave function for a particular coordinate
system (example, Schrodinger equation spherical coordinate
system) contains angular and coordinate system, and this
method separates the angular and radial part by factorization
method known as separation of variable in general like
Y(r,6,¢) = R(r)0(0)P(¢) after separating the angular and
radial parts. The radial part is defined as R(r) = U(r)L(r),
Here U(r) is related to potential and L(r) is associated with
Laguerre differential equation. The angular part is defined as
0(x) = U(x)P(x), here x = cos@, P(x) related to the Jacobi
function.

2. Theoretical Formulation

We have radial form part of SE is
. 2m 11+ 1A
Y (7”)"‘? Enl_V(r)_W Yr)=0
4a2€—2dr

m, a radical

Using centrifugal approximation :—2 =
form of SE become
. 2m Voe 29"

Y(r) + 7z Bt 1= ge2ar

I(1+ 1A% 4a?e2%"
T 2m (A= ezary| ¥ =0
Let us consider Z = ﬁ then the radial form of the
equation become

2m
¥ +F[Em V@ -1)

W+, (Z-1)
TR L)
=0 (1
On solving equation (1), we get

V'(2)Z(Z-1)+y'(2)(2Z - 1)

mEy,; 1 ml, 1
2h2a2Z(Z —1) 2h%2a?Z
—lD|p@ =0 @
R mEn _ _ _ mVy _
Again supposed TTrT €06 = thaZ’( =Il(l+ 1),

therefore equation (2) becomes
Y"(2) 2%1 -2)+y'"(2H)(1-22)
—€
+ [Z(Z —nz7" {] ¥
=0 3)
Now asymptotic behavior of equation (3),atr - 0 (Z - 1)
and r - o (Z - 0), Let us introduce a new function f(Z) as

Y(2)
=71
-1 (2) (€]

Combining equations (4) and (3), we get a new equation of
the form

ZA=2Df"(2) + [1+2u— 2u—2¢ - 2)ZIf'(2)
—[(u+ 4:5)2 + et $)+ Ol 5(2)

—e— _

Z(1 —;)u ’ (1 fz;- F@
=0 Q)
Now equation (5) becomes the Gauss hypergeometric
equation when the square bracket term equal to zero
—e—6+u%2=0, P2—pu?2+6=0
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Therefore, equation (5) is written as
ZA-2)f"@) +[1+2p— Q2u-2¢ - 2)ZIf'(2)

1 1
- H+¢+E+ Z-{

1 1
X\utdt+s— |7-¢1f @D
=0 (6)

The Gaussian hypergeometric function (GHF), 2F1(a, b; ¢; 2)

can be expressed as infinite series for |z] < 1 as,

ceig) = Yoo @nWhnz" o, abz

Ful@b;iciz) =m0 "o m =1t Tut
a(a+1)b(b+1) z*
c(c+1) 2!

r'(a+n) r'(b+n) I'(c+n)
Here (a), = Fa(a;l ,(B)n = F(b;l ,(C)p = FC(C;I

these in the above equation and simplifying we get,

F2) = oFi(as, by 2) = )
I'(a)T(b1)
Here we consider aq,,b; and c; are unknown parameters

putting

whose values are expressed as a; = (u +¢+ % +

E—f),b1=<u+¢+%— %—(),c1=1+2u. Now

substituting the value of f(Z) with these parameters in
Y(Z) = Z*(1 — 2)?£(2) in this, we get

Y(2)
= 7r(1

® 1 1 1 1
-27) zF1(IJ+¢+§+ Z—f,#+¢+§— Z—§:1+2M:Z)

If a;, by, and cyis equal to the negative of integer (n) then
hypergeometric function f(Z) will become a polynomial with
n = 0,1,2,3,..., nya, integer, applying quantum condition
we have, a; = —nand b; = —n. Now using ¢? — u?+ 6 =
0 to calculate the value of ¢ and u from the above suitable

value we get
w-n 6 w-n S5
¢ = (" + o) = (57— 5 ) where o =
1 1
r
Now to calculate the energy we have from —e — § + p2 =
0and ¢2—pu?+6=0ise = 2. Since we have 2orL —

s 2h2a?
w-n
—eand ¢ - (T + 2(w-n)

), therefore we have,

2h%a? jw —n
m ( 2
6 2
2(w — n)) )
Substituting the value of §, w, ¢ in equation (7) we get,

2h2¢2 ’%—l(l+1)—%—n
En=—

m 2

mVO
2h%a?

2(/%—l(l+1)—%—n>

+
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L LRI
=T om 4 2~ "

2
mVO
272

</%—l(l+1)—%—n)

This equation is dependent upon the quantum number and
screening parameters. It is a non-relativistic energy spectrum
that was calculated using HP, which is short-range potential.
Tablel: Energy eigenvalue of g-deformed HP

Quantum
Number Energy eigenvalue (E,;)
=1la | =1La |=05a|=01a| =0.1a
n | =1 =05 [=1 =1 =0.1
2.20977 1.511428|1.047957
0 531 |-2.2942 | 202 128 |-0.37392
3.342473|2.921198
1 1| -3.909 [-2.0596| 165 927 |-0.21685
3.90895 [2.059648(3.342473(2.921198
0 | 5159 762 165 927 |-0.21685
6.73920 [2.599411|6.206286(5.795751
1| 8248 115 437 457 | -0.20085
2 15.4626 |4.680554(14.94963|14.54548
2 | 1915 734 916 557 |-0.26176
6.73920 [2.599411|6.206286(5.795751
0| 8248 115 437 457 | -0.20085
10.5964 |3.497067(10.07684(9.670573
1| 3495 921 311 724 |-0.22183
21.3326 (6.129289|20.82338(20.42043
2 | 1546 967 824 553 |-0.31551
3 - - - -
44,9510 {12.00908|44.44673|44.04536
3| 0139 368 472 939 |-0.54514
15.4626 |3.497067(10.07684(9.670573
0 | 1915 921 311 724 |-0.22183
21.3326 |4.680554(14.94963(14.54548
1| 1546 734 916 557 |-0.26176
36.0774 |7.835599|27.69761(27.29540
2 | 4104 168 069 443 |-0.38115
65.6991 (14.47365|54.32147(53.92035
4 | 3| 7677 847 377 895 |-0.64285
119.197 |26.83975(103.8209|103.4203
4 | 4276 676 174 367 |-1.13562
5 - - - -
15.4626 |4.680554(14.94963|14.54548
0 | 1915 734 916 557 |-0.26176
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21.3326 |6.129289|20.82338(20.42043

1| 1546 967 824 553 |-0.31551

36.077419.796092(35.57209(35.17038

2 | 4104 271 463 379 |-0.45783

65.6991 |17.18928|65.19627|64.79535

3| 7677 52 857 114 | -0.75082

119.197 (30.55728|118.6958(118.2953

4 | 4276 87 413 337 | -1.28407

208.571 [52.89739(208.0706|207.6703
5] 5169 577 136 245
2.1. Thermodynamic Properties

HP is also used to explain the electronic properties of some
alkali halides, study the bound state and scattering properties,
etc. Moreover, statistical physics and quantum statistical
mechanics help predict, interpret, analyze, etc., different
thermodynamic properties such as vibrational and rotational
energy levels of various molecules [6]. Thermodynamics
properties of HP are also studied for statistical quantum
chromodynamics (QCD), nuclear matter, a color deconfined
partonic phase, and the quark-gluon plasma (QGP) at
sufficiently high temperature/density [7].

Now to calculate the thermodynamic properties for HP, now
we develop (8) equation to study the thermodynamic
properties; we use the vibrational partition function for this we
summarized E,,; as,

-2.17691

Enl
_ h*a? P
T 2m \(o6+n)
2
—(c+ n)) €]
—_1 1_ — _ ™
Here, —0 = ——+ ’4 I+ 1), P =—-775 since
vibrational partition function is defined as
n
1
Zun(B) = ) Pt = —
n=0
Therefore, substituting the value of E,; in Z,,;;, HP with
partition function modified as,
) Zvib(ﬁ)
n n2a?( P
—ﬂ[— (——(cr+n)> ]
_ Z e 2m \ (c+n) (10)
n=0 ) ) B .
Replacing the sum by an integral in the classical limit of
equation (10), we have
) Zvib(ﬁ)
h2a?( P
T
_ J- e 2m \ (o+n) dn (11)
0
Supposing g + n = p, equation (becomescome [8]
bg Zvib(ﬁ)
n+o (bB
= f e(PZJrﬁaPZHﬁ)dp (12)
g
Herea = 2% p = @'P® o _ _F@’P o equation (12)
2m 2m m
becomes

Zvib (.B)

ech=2/=aB\=bB [ (— erflly — I,] + e*=BY=P (erf[Ty + Tp] — erf[Q; + T, + Q,]) — E)
(

4/=af
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/_bl;
Where I} =~—,T; = [—aBo,Qy = /—aBn,Q, =
—n:rbf and E = erf [Q; + T, — Q,] and the error function

well-defined as

2 ztz
erf(Z)=ﬁf et dt
0

Equation (13) plays an integral equation used to describe the
thermodynamic properties of g-deformed HP. This equation
described vibrational mean and free energy, vibrational
entropy, and specific heat capacity. The Integrals error
function erf (Z) has essential applications in atomic physics,
astrophysics, statistical analysis, etc. [9]

3. Results and discussion

2.2. Energy eigenvalue of g-deformed HP

The energy eigenvalue is represented in atom unit withm =
h=1,atV, =0.51and « = 0.5,1. The energy eigenvalue is
developed of g-deformed HP. It is beneficial to calculate the
thermodynamic properties of physics fields like quantum
chromodynamics, meson-meson interaction, nuclear matter
color chromodynamics, etc. The nature of energy eigenvalue
with quantum number is shown in figure 1, which shows that
with an increased quantum number the electron bounded
energy decreases which means the electron goes loosely
bounded with the nucleus in an atom.

100}
c
L
150

-200

Quantum Nuumber

-250 ' ‘
0 1 2 3 4
Quantum Nuumber
Figure 1: Energy eigenvalue of gq-deformed Hulthen
Potential
2.3. Thermodynamic properties of q-deformed HP

2.3.1.  Vibrational mean energy of q-deformed HP
(VMEQHP)
The mean vibrational energy for the HP model is obtained as,
UB) = 5 (s ()
up) =
F) eh-2/-aBV-bB /x (— erf[l'y—T;]+e*V=aBV=DB (erf[T, +T,]—erf[Q, +T, +9.2])—E)
BT ”( +J=af

By solving this equation, we get,
Up) = d(n{ (erf[r;-1zD}) + dinferf[[1 4150}

ag ag
dln{erf[!;1ﬁ+l"2+ﬂz]} (14)
2.3.2.  Vibrational mean free energy of q-deformed HP

(VMEFgHP)
The vibrational mean free energy is obtained as

F(B) = —=kTIn(Zyi» (B))

<efﬁ-2\WJ-Tﬂﬁ (— erf[l, — T,] + e™=9BV=bB(erf[l, +T,] — erf[Q, + T, + Q,]) — E)
= —kTIn

4,/—ap

F(B) = —kT[In{ (erf[; — D} + In{erf[[} + [,]}
—In{erf[Q; + T, + Q,]} +In{E}] (15)



Karki et al. / BIBECHANA 19(1-2) (2022) 165-169

233. Vibrational specific heat capacity of g-deformed
HP (VSHCgHP)

The vibrational specific heat capacny (Cs) is given as

C(B) = kﬁz 52 (In(Zvin (B)))
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multiuse use. Therefore, studying the thermodynamic
properties for consideration in this paper has equal importance
as discussed in the literature [8, 9]. The thermodynamic
properties of the electron in considering potential is obtained
in equation (14), (15), (16), and (17) showing that the
thermodynamic properties depend upon quantum number also.
Therefore, the thermodynamic properties for considering
potential depend wupon quantum number as well as
temperature.

3. Conclusion

The development of energy eigenvalue for g-deformation HP
potential develops in equation (8) with the help of this energy
vibrational thermodynamic properties are calculated. The
development of a mathematical model for thermodynamic
properties for the electron in g-deformation potential is
completely new. In addition, the thermodynamic properties
also depend upon the quantum number which means vary with
the quantum number. For example, the thermodynamic
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the thermodynamic properties of the electron in the n=2 orbit
and so on. This is because the thermodynamic properties
depend upon the energy eigenvalue of the electron and the
energy eigenvalue of the electron depends upon the quantum
number. The developed mathematical model is based on a
Gaussian hypergeometric function with a partition function.
To study the more detailed thermodynamic properties of an
electron in considering potential one may extend the
development theory because due to the complexity of
mathematical derivation authors consider the limitations of
their work.
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