VOLUME 17 January 2020 eISSN: 2382-5340 ISSN: 2091 - 0762

Journal of Physical Sciences

BIBECHANA

Editor-in-Chief

Devendra Adhikari Professor, Physics MMAMC, T.U.

Published by
Department of Physics
Mahendra Morang Adrash Multiple Campus
T.U., Biratnagar

BIBECHANA

ISSN 2091-0762 (Print), 2382-5340 (Online)

Journal homepage: http://nepjol.info/index.php/BIBECHANA

Publisher: Department of Physics, Mahendra Morang A.M. Campus, TU, Biratnagar, Nepal

Ricci solitons on Lorentzian para-Sasakian manifolds

Riddhi Jung Shah

Department of Mathematics, Janata Campus, Nepal Sanskrit University, Dang, Nepal

Email: shahrigeo@gmail.com

Article Information

Received: June 5, 2019 Accepted: December 5, 2019

Keywords:

Ricci soliton

LP-Sasakian manifold

 W_2 -curvature tensor

 W_{4} -curvature tensor

ABSTRACT

In this paper we study Ricci solitons in Lorentzian para-Sasakian manifolds. It is proved that the Ricci soliton in a (2n+1)-dimensinal LP-Sasakian manifold is shrinking. It is also shown that Ricci solitons in an LP-Sasakian manifold satisfying the derivation conditions $R(\xi,X)W_2=0,W_2(\xi,X)W_4=0$ and $W_4(\xi,X)W_2=0$ are shrinking but are steady for the condition $W_2(\xi,X).S=0$. Finally, we give an example of 3-dimensional LP-Sasakian manifold and prove that the Ricci soliton is expanding and shrinking in this manifold.

DOI: https://doi.org/10.3126/bibechana.v17i0.24341

This work is licensed under the Creative Commons CCBY-NC License.

https://creativecommons.org/licenses/by-nc/4.0/

1. Introduction

A Ricci soliton is a natural generalization of an Einstein metric and is defined on a Riemannian manifold (M,g). A Ricci soliton is a triple (g,V,λ) with g a Riemannian metric, V a vector field and λ a real scalar such that

$$L_{v}g + 2S + 2\lambda g = 0, (1.1)$$

where *S* is the Ricci tensor and $L_{\nu}g$ denotes the Lie derivative of *g* along a vector field V [1]. The Ricci soliton is said to be shrinking, steady and expanding according as $\lambda < 0, \lambda = 0$ and $\lambda > 0$ respectively. Compact Ricci solitons are the fixed points of the Ricci flow

$$\frac{\partial g}{\partial t} = -2S$$

projected from the space of metrics onto its quotient modulo diffeomorphism and scalings and often arise as blow-up limits for the Ricci flow on compact manifolds.

Metrics satisfying (1.1) are interesting and useful in physics and often are referred as quasi-Einstein (eg, see [2], [3]). The Ricci flow was used by Perelman to prove the Poincare's conjecture theorem and the Thurston's geometrization conjecture theorem in topology [4]. Ricci solitons have also been studied by [5], [6], [7], [8] and others.

On the other hand, the notion of a Lorentzian para-Sasakian manifold was introduced by

Matsumoto [9]. Mihai and Rosca defined the same notion independently and obtain several results on this manifold [10]. LP-Sasakian manifolds have also been studied by [11], [12], [13] and others. In this paper, we prove some derivation conditions for Ricci solitons in LP-Sasakian manifolds. We investigate shrinking property of Ricci soliton in a LP-Sasakin manifold when a vector field V is collinear with ξ . We obtain some results of Ricci solitons on LP-Sasakian manifolds satisfying $R(\xi, X)W_2 = 0, W_2(\xi, X)S = 0,$ conditions $W_4(\xi, X).W_2 = 0$ $W_{2}(\xi, X).W_{4} = 0$ and respectively. Finally, we give an example of 3dimensional LP-Sasakian manifold which is expanding and shrinking Ricci soliton.

2. Preliminaries

Let M be a (2n+1)-dimensional differentiable manifold. Then M is said to be a Lorentzian para-Sasakian manifold (briefly LP-Sasakian manifold), if it admits a (1, 1) tensor field φ , a contravariant vector field ξ , a 1-form η and a Lorentzian metric g which satisfy

$$\eta(\xi) = -1, \varphi^2(X) = X + \eta(X)\xi,
\varphi\xi = 0, \eta(\varphi X) = 0,$$
(2.1)

$$g(\varphi X, \varphi Y) = g(X, Y) + \eta(X)\eta(Y), \qquad (2.2)$$

$$g(X,\xi) = \eta(X), \tag{2.3}$$

$$\nabla_{X}\xi = \varphi X, \tag{2.4}$$

$$(\nabla_X \varphi) Y = g(X, Y) \xi + \eta(Y) X + 2\eta(X) \eta(Y) \xi, (2.5)$$

for all $X, Y \in TM$, where ∇ denotes the covariant differentiation with respect to the Lorentzian metric g [9, 10].

If we put,

$$\Phi(X,Y) = g(X,\varphi Y),$$

then Φ is a symmetric (0,2) tensor field [9]. Since the 1-form η is closed in an LP-Sasakian manifold we have [12], [9]

$$(\nabla_X \eta) Y = \Phi(X, Y) = g(X, \varphi Y) = g(\varphi X, Y). (2.6)$$

In a (2n+1)-dimensional LP-Sasakian manifold the following relations hold

$$\eta(R(X,Y)Z) = g(Y,Z)\eta(X) - g(X,Z)\eta(Y),$$
(2.7)

$$R(\xi, X)Y = g(X, Y)\xi - \eta(Y)X, \qquad (2.8)$$

$$R(X,Y)\xi = \eta(Y)X - \eta(X)Y, \tag{2.9}$$

$$S(X,\xi) = 2n\eta(X), \tag{2.10}$$

$$S(\varphi X, \varphi Y) = S(X, Y) + 2n\eta(X)\eta(Y), \qquad (2.11)$$

for any vector fields X, Y, Z, where R and S are the Riemannian curvature tensor and the Ricci tensor of the manifold, respectively [11].

Let (g,V,λ) be a Ricci soliton in a (2n+1)-dimensional LP-Sasakian manifold M. Then we have

$$(L_{\varepsilon}g)(X,Y) = g(\nabla_{X}\xi,Y) + g(\nabla_{Y}\xi,X).$$

Using (2.4) and (2.6) in this equation we get $(L_z g)(X, Y) = 2g(X, \varphi Y)$. (2.12)

From (1.1) and (2.12) we obtain

$$S(X,Y) = -\{\lambda g(X,Y) + g(X,\varphi Y)\}, \qquad (2.13)$$

$$r = -(2n+1)\lambda$$
, provided $tr.\varphi = 0$. (2.14)

$$S(X,\xi) = -\lambda \eta(X). \tag{2.15}$$

3. Results and Discussion

Now, we have the following results and their proofs

Theorem 3.1: If in a (2n+1)-dimensional LP-Sasakian manifold the metric g is a Ricci soliton and V is pointwise collinear with ξ , then V is a constant multiple of ξ and g is shrinking.

Proof: Let M be a (2n+1)-dimensional LP-Sasakian manifold with Lorentzian metric g. A Ricci soliton is a generalization of an Einstein metric and defined on a Riemannian manifold (M,g) by (1.1). Let V be pointwise collinear with ξ i.e., $V = c\xi$ where c is a function on a (2n+1)-dimensional LP-Sasakian mani-fold. Then from (1.1), we have

$$(L_{c}g)(X,Y) + 2S(X,Y) + 2\lambda g(X,Y) = 0.$$
 (3.1)

Further simplification and use of (2.4) in (3.1) vields

$$cg(\varphi X, Y) + (Xc)\eta(Y) + cg(\varphi Y, X) + (Yc)\eta(X) + 2S(X, Y) + 2\lambda g(X, Y) = 0.$$
(3.2) By

virtue of (2.6) and (3.2) we obtain

$$2cg(X,\varphi Y) + (Xc)\eta(Y) + (Yc)\eta(X) + 2S(X,Y) + 2\lambda g(X,Y) = 0.$$
(3.3)

Putting $Y = \xi$ in (3.3) and using (2.1), (2.3) and (2.10) we get

$$\{(\xi c) + 4n + 2\lambda\}\eta(X) - (Xc) = 0. \tag{3.4}$$

Taking $X = \xi$ in (3.4) gives

$$\xi c = -(2n + \lambda). \tag{3.5}$$

view of (3.4) and (3.5) we obtain

$$Xc = (2n + \lambda)\eta(X),$$

which implies

$$dc = (2n + \lambda)\eta. \tag{3.6}$$

Taking exterior derivative on both sides of (3.6) we get

$$(2n+\lambda)d\eta = 0, (3.7)$$

since $d\eta \neq 0$, we have $2n + \lambda = 0$. Hence c is constant from (3.6).Consequently, the equation (3.3) reduces to

$$S(X,Y) = -\{\lambda g(X,Y) + cg(X,\varphi Y)\}. \tag{3.8}$$

Comparing (2.13) and (3.8) we get c=1. Again, $2n + \lambda = 0$ implies that $\lambda = -2n < 0$ for n > 1. Thus the Ricci soliton is shrinking. This proves the theorem.

Theorem 3.2: A Ricci soliton in a W_2 -semisymmetric LP-Sasakian manifold of dimension (2n+1) is shrinking.

Proof: Let M be a (2n+1)-dimensional LP-Sasakian manifold admitting a Ricci soliton (g,V,λ) . The W, -curvature tensor in M is defined by [14]

$$W_{2}(X,Y,Z,T) = R(X,Y,Z,T) + \frac{1}{2n} [g(X,Z)Ric(Y,T)]$$
$$-g(Y,Z)Ric(X,T)],$$

this can be written as

$$W_{2}(X,Y)Z = R(X,Y)Z + \frac{1}{2n}[g(X,Z)QY - g(Y,Z)QX].$$
(3.9)

Putting $X = \xi$ in (3.9) and using (2.3) and (2.8) By we get

$$W_{2}(\xi, Y)Z = g(Y, Z)\xi - \eta(Z)Y + \frac{1}{2n}[\eta(Z)QY - g(Y, Z)Q\xi].$$
(3.10)

Taking inner product on both sides of (3.9) with ξ and using (2.7) and (2.15) we obtain

$$\eta(W_2(X,Y)Z) = \left(1 + \frac{\lambda}{2n}\right) [g(Y,Z)\eta(X)] (3.11)$$
$$-g(X,Z)\eta(Y)].$$

In Suppose that condition $R(\xi, X)W_2(Y, Z)U = 0$ holds in M. Then by definition we have

$$R(\xi, X)W_{2}(Y, Z)U - W_{2}(R(\xi, X)Y, Z)U - W_{2}(Y, R(\xi, X)Z)U - W_{2}(Y, Z)R(\xi, X)U$$
 (3.12) for = 0

all vector fields X, Y, Z, U on M.

In view of (2.8) and (3.12) we get

If view of (2.6) and (3.12) we get
$$g(X, W_2(Y, Z)U)\xi - \eta(W_2(Y, Z)U)X$$

$$-g(X, Y)W_2(\xi, Z)U + \eta(Y)W_2(X, Z)U$$

$$-g(X, Z)W_2(Y, \xi)U + \eta(Z)W_2(Y, X)U$$

$$-g(X, U)W_2(Y, Z)\xi + \eta(U)W_2(Y, Z)X$$

$$= 0.$$
(3.13)

Taking inner product on both sides of (3.13) with ξ and using (2.1) we obtain

$$g(W_{2}(Y,Z)U,X) + \eta(W_{2}(Y,Z)U)\eta(X) + g(X,Y)\eta(W_{2}(\xi,Z)U) - \eta(Y)\eta(W_{2}(X,Z)U) + g(X,Z)\eta(W_{2}(Y,\xi)U) - \eta(Z)\eta(W_{2}(Y,X)U) + g(X,U)\eta(W_{2}(Y,Z)\xi) - \eta(U)\eta(W_{2}(Y,Z)X) = 0$$
 In

view of (3.9), (3.11) and (3.14), we get

$$g(R(Y,Z)U,X) + \frac{1}{2n} [g(Y,U)S(X,Z) - g(Z,U)S(X,Y)] + \left(1 + \frac{\lambda}{2n}\right) [\eta(X)\{g(U,Z)\eta(Y) - g(Y,U)\eta(Z)\} - g(X,Y)\{g(Z,U) + \eta(U)\eta(Z)\} - \eta(Y)\{g(Z,U)\eta(X) - g(X,U)\eta(Z)\} + g(X,Z)\{g(Y,U) + \eta(Y)\eta(U)\} - \eta(Z)\{g(X,U)\eta(Y) - g(Y,U)\eta(X)\} - \eta(U)\{g(X,Z)\eta(Y) - g(X,Y)\eta(Z)\}] = 0.$$
(3.15)

Let $\{e_i : i = 1, 2, ..., 2n+1\}$ be an orthonormal basis of the tangent space at any point of the manifold. Putting $X = Y = e_1$ in (3.15) and taking summation over $i, 1 \le i \le 2n + 1$, we get

$$S(Z,U) = \frac{r + 2n(2n + \lambda)}{2n + 1}g(Z,U). \qquad (3.16)$$

Again taking an orthonormal frame field at any point of the manifold and contracting over Z and U in (3.16) We have $\lambda = -2n < 0$, for n > 1. Hence the Ricci soliton is shrinking. This completes the proof of the theorem.

Theorem 3.3: Let M be a (2n+1)-dimensional LP-Sasakian manifold and (g,V,λ) be a Ricci soliton satisfying the condition $W_2(\xi,X).S=0$ in M, then the Ricci soliton is steady.

Proof: Let M be a (2n+1)-dimensional LP-Sasakian manifold and (g,V,λ) be a Ricci soliton in M. Suppose that the condition $W_2(\xi,X)S(Y,Z)=0$ holds in M, then we have $S(W_2(\xi,X)Y,Z)+S(Y,W_2(\xi,X)Z)=0$. (3.17) In view of (3.10), (2.15) and (3.17) we obtain $\lambda\{g(X,Y)\eta(Z)+g(X,Z)\eta(Y)\}-\frac{1}{2n}\{S(QX,Z)\eta(Y)+S(QX,Y)\eta(Z)\}+S(X,Z)\eta(Y)+S(X,Y)\eta(Z)+g(X,Z)S(Q\xi,Z)+g(X,Z)S(Q\xi,Y)=0$. (3.18)

Putting $Z = \xi$ in (3.18) and using (2.1), (2.3) and (2.15) we get

$$S(QX,Y)$$

$$= 2n[\lambda\{(\lambda+1)g(X,Y) + \frac{\lambda}{2n}\eta(X)\eta(Y)\}$$

$$+ S(X,Y) - \eta(X)S(Q\xi,Y)].$$
(3.19)

Again taking $Y = \xi$ in (3.19) and using (2.1), (2.3) and (2.15) we obtain

$$(2n-1)\lambda^2 \eta(X) = 0,$$
 (3.20)

since $\eta(X) \neq 0$, (3.20) implies that $\lambda = 0$. Thus the Ricci soliton is steady. This proves the theorem.

Theorem 3.4: A Ricci soliton in a (2n+1)-dimensional LP-Sasakian manifold satisfying the condition $W_2(\xi, X)W_4 = 0$ is shrinking under the condition $tr.\varphi = 0$.

Proof: Let M be a (2n+1)-dimensional LP-Sasakian manifold and (g,V,λ) be a Ricci soliton in M. The W_4 -curvature tensor in M is defined by [15]

$$W_{4}(X,Y,Z,T)$$

$$= R(X,Y,Z,T) + \frac{1}{2n} [g(X,Z)Ric(Y,T) - g(X,Y)Ric(Z,T)]$$

which can be written as

$$W_{4}(X,Y)Z = R(X,Y)Z + \frac{1}{2n}[g(X,Z)QY - g(X,Y)QZ].$$
(3.21)

Putting $X = \xi$ in (3.21) and using (2.3) and (2.8) we obtain

$$W_{4}(\xi, Y)Z = g(Y, Z)\xi - \eta(Z)Y + \frac{1}{2n} [\eta(Z)QY - \eta(Y)QZ].$$
 (3.22)

Taking inner product on both sides of (3.21) with ξ and using (2.7) and (2.15) we get

$$\eta(W_4(X,Y)Z) = g(Y,Z)\eta(X) + \frac{\lambda}{2n}g(X,Y)\eta(Z) \qquad (3.23)$$

$$-\left(1 + \frac{\lambda}{2n}\right)g(X,Z)\eta(Y).$$

Now, we assume that the condition $W_2(\xi, X)W_4(Y, Z)U = 0$ holds in M, then we have

$$W_{2}(\xi, X)W_{4}(Y, Z)U -W_{4}(W_{2}(\xi, X)Y, Z)U -W_{4}(Y, W_{2}(\xi, X)Z)U -W_{4}(Y, Z)W_{2}(\xi, X)U = 0.$$
(3.24)

In view of (3.10) and (3.24) we get $g(W_{4}(Y,Z)U,X)\xi - \eta(W_{4}(Y,Z)U)X + \frac{1}{2n}[\eta(W_{4}(Y,Z)U)QX - g(W_{4}(Y,Z)U,X)Q\xi - \eta(Y)W_{4}(QX,Z)U + g(X,Y)W_{4}(Q\xi,Z)U - \eta(Z)W_{4}(Y,QX)U + g(X,Z)W_{4}(Y,Q\xi)U - \eta(U)W_{4}(Y,Z)QX + g(X,U)W_{4}(Y,Z)Q\xi] - g(X,Y)W_{4}(\xi,Z)U + \eta(Y)W_{4}(X,Z)U - g(X,Z)W_{4}(Y,\xi)U + \eta(Z)W_{4}(Y,X)U - g(X,U)W_{4}(Y,Z)\xi + \eta(U)W_{4}(Y,Z)X = 0.$ (3.25)

Taking inner product on both sides of (3.25) with ξ and using (2.1), (2.3) and (2.15) we obtain

$$\left(1 + \frac{1}{2n}\right) \left\{g\left(W_{4}(Y,Z)U,X\right) + \eta(X)\eta(W_{4}(Y,Z)U)\right\}$$

$$+ \frac{1}{2n}\left\{\eta(Y)\eta(W_{4}(QX,Z)U) - g(X,Y)\eta(W_{4}(Q\xi,Z)U)\right\}$$

$$+ \eta(Z)\eta(W_{4}(Y,QX)U) - g(X,Z)\eta(W_{4}(Y,Q\xi)U)$$

$$+ \eta(U)\eta(W_{4}(Y,Z)QX) - g(X,U)\eta(W_{4}(Y,Z)Q\xi)\}$$

$$+ g(X,Y)\eta(W_{4}(\xi,Z)U) - \eta(Y)\eta(W_{4}(X,Z)U)$$

$$+ g(X,Z)\eta(W_{4}(Y,\xi)U) - \eta(Z)\eta(W_{4}(Y,X)U)$$

$$+ g(X,U)\eta(W_{4}(Y,\xi)U) - \eta(U)\eta(W_{4}(Y,Z)X) = 0.$$

$$(3.26)$$

In view of (3.21), (3.23), (3.26) and (2.15) we get

$$\left(1 + \frac{\lambda}{2n}\right) [g(R(Y,Z)U,X) - g(X,Y)g(Z,U)
+ \frac{1}{2n} \{g(Y,U)S(X,Z) - g(Y,Z)S(X,U)
+ S(X,Z)\eta(U)\eta(Y) + \lambda g(X,Z)\eta(U)\eta(Y)
- \lambda g(Y,Z)g(X,U)\} + \left(1 + \frac{\lambda}{2n}\right) g(X,Z)g(Y,U)]
- \frac{\lambda}{4n^2} \{S(X,U) + \lambda g(X,U)\}\eta(Y)\eta(Z)
- \frac{1}{2n} \{\lambda g(X,Y) + S(X,Y)\}\eta(U)\eta(Z) = 0.$$
(3.27)

Let $\{e_i: 1,2,...,2n+1\}$ be an orthonormal basis of the tangent space at any point of the manifold. Putting $X = Y = e_i$ in (3.27) and summing over $i, 1 \le i \le 2n+1$, we get

$$S(U,Z) = 2ng(U,Z) + \left\{ \frac{(2n+1)\lambda + r}{2n+\lambda} \right\} \eta(U) \eta(Z).$$
 (3.28)

Again taking $U = Z = \xi$ and using (2.1), (2.3), (2.14) and (2.15) we get $\lambda = -2n < 0$. Thus λ is negative. This concludes that the Ricci soliton is shrinking. This completes the proof of the theorem.

Theorem 3.5: Let M be a (2n+1)-dimensional LP-Sasakian manifold and (g,V,λ) be a Ricci soliton in M. If g satisfies the condition $W_4(\xi,X)W_2=0$, then g is shrinking under the condition $tr.\varphi=0$.

Proof: Let M be a (2n+1)-dimensional LP-Sasakian manifold and (g,V,λ) be a Ricci soliton in M. Suppose that the condition $W_4(\xi,X)W_2(Y,Z)U=0$ holds in M, then by definition we have

$$0 = W_{4}(\xi, X)W_{2}(Y, Z)U - W_{2}(W_{4}(\xi, X)Y, Z)U$$

$$-W_{2}(Y, W_{4}(\xi, X)Z)U - W_{2}(Y, Z)W_{4}(\xi, X)U.$$
(3.29)

By virtue of (3.22) and (3.29) we have
$$g(W_{2}(Y, Z)U, X)\xi - \eta(W_{2}(Y, Z)U)X$$

$$+ \frac{1}{2n}[\eta(W_{2}(Y, Z)U)QX - \eta(X)QW_{2}(Y, Z)U$$

$$-\eta(Y)W_{2}(QX, Z)U + \eta(X)W_{2}(QY, Z)U$$

$$-\eta(Z)W_{2}(Y, QX)U + \eta(X)W_{2}(Y, QZ)U$$

$$-\eta(U)W_{2}(Y, Z)QX + \eta(X)W_{2}(Y, Z)QU]$$

$$-g(X, Y)W_{2}(\xi, Z)U + \eta(Y)W_{2}(X, Z)U$$

$$-g(X, Z)W_{2}(Y, \xi)U + \eta(Z)W_{2}(Y, X)U$$

$$-g(X, Z)W_{2}(Y, \xi)U + \eta(Z)W_{2}(Y, X)U$$

$$-g(X, U)W_{2}(Y, Z)\xi + \eta(U)W_{2}(Y, Z)X$$

Taking inner product on both sides of (3.30) with ξ and using (2.1), (2.3) and (2.15) we obtain

$$g(W_{2}(Y,Z)U,X) + \eta(X)\eta(W_{2}(Y,Z)U) + \frac{1}{2n}[\lambda\eta(X)\eta(W_{2}(Y,Z)U) + \eta(X)g(QW_{2}(Y,Z)U,\xi) + \eta(Y)\eta(W_{2}(QX,Z)U) - \eta(X)\eta(W_{2}(QY,Z)U) + \eta(Z)\eta(W_{2}(Y,QX)U) - \eta(X)\eta(W_{2}(Y,QZ)U) + \eta(U)\eta(W_{2}(Y,Z)QX) - \eta(X)\eta(W_{2}(Y,Z)QU)] + g(X,Y)\eta(W_{2}(\xi,Z)U) - \eta(Y)\eta(W_{2}(X,Z)U) + g(X,Z)\eta(W_{2}(Y,\xi)U) - \eta(Z)\eta(W_{2}(Y,X)U) + g(X,U)\eta(W_{2}(Y,Z)\xi) - \eta(U)\eta(W_{2}(Y,Z)X) = 0.$$
(3.31)

In view of (3.9) and (3.11), (3.31) yields $g(R(Y,Z)U,X) + \frac{1}{2n} \{g(Y,U)S(X,Z) - g(Z,U)S(X,Y)\} + \left(1 + \frac{\lambda}{2n}\right) [g(Y,U)g(X,Z) - g(X,Y)g(Z,U) + \frac{1}{n} \{S(Y,U)\eta(X)\eta(Z) - S(Z,U)\eta(X)\eta(Y) + \frac{1}{2} S(X,Z)\eta(Y)\eta(U) - \frac{1}{2} S(X,Y)\eta(U)\eta(Z)\}] = 0.$ (3.32)

Let $\{e_i : i = 1, 2, ..., 2n + 1\}$ be an orthonormal basis of the tangent space at any point of the manifold. Putting $X = Y = e_i$ in (3.32) and summing over $i, 1 \le i \le 2n + 1$, we get

$$S(Z,U) = \left(\frac{8n^{3} + 4n^{2}\lambda + 2nr}{4n^{2} + 6n + 2\lambda}\right) g(U,Z)$$

$$+ \left(\frac{6n\lambda + 2nr + 3\lambda^{2} + \lambda r}{4n^{2} + 6n + 2\lambda}\right) \eta(U) \eta(Z).$$
(3.33) Again,

putting $Z = U = \xi$ in (3.33) and using (2.1), (2.3) and (2.15) we get $\lambda^2 + 4n\lambda + 4n^2 = 0$. (3.34)

This equation gives $\lambda = -2n, -2n$. Hence λ is negative. This concludes that the Ricci soliton is shrinking. Thus the theorem is proved.

From theorem 3.4 and theorem 3.5 we can state next theorem

Theorem 3.6: Ricci solitons in a (2n+1)-dimensional LP-Sasakian manifold satisfying the derivation conditions $W_2(\xi, X)W_4 = 0$ and $W_4(\xi, X)W_2 = 0$ are equivalent.

Now we give an example of LP-Sasakian manifold.

4. Example for 3-dimensional LP-Sasakian Manifold

Let us consider a 3-dimensional manifold $M = \{(x, y, z) : (x, y, z) \in R^3\}$, where (x, y, z) are standard coordinates in R^3 . We choose the vector fields

$$E_1 = -e^x \frac{\partial}{\partial y}, E_2 = e^x \left(\frac{\partial}{\partial z} - \frac{\partial}{\partial y} \right), E_3 = \frac{\partial}{\partial x}, \quad (4.1)$$

which are linearly independent at each point of M. Let g be the Lorentzian metric defined by

$$g(E_1, E_2) = g(E_2, E_3) = g(E_1, E_3) = 0,$$
 (4.2)
 $g(E_1, E_1) = g(E_2, E_2) = g(E_3, E_3) = -1.$ (4.3) Let η be a 1-form defined by $\eta(Z) = g(Z, E_3)$ for any vector field Z on M . Let φ be a (1, 1) tensor

$$\varphi(E_1) = -E_1, \varphi(E_2) = -E_2, \varphi(E_3) = 0.$$
 (4.4) The linearity property of φ and g yields that

$$\eta(E_3) = -1, \varphi^2(U) = U + \eta(U)E_3,$$
(4.5)

$$g(\varphi Z, \varphi U) = g(Z, U) + \eta(Z)\eta(U), \tag{4.6}$$

for any vector fields Z,U on M. Thus for $E_3 = \xi, (\varphi, \xi, \eta, g)$ defines a Lorentzian paracontact structure on M.

paracontact structure on M.

field defined by

By the definition of Lie bracket and (4.1) we have

$$[E_1, E_3] = -E_1, [E_1, E_2] = 0, [E_2, E_3] = -E_2.$$
 (4.7)

Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric g, the Koszul formula is defined as

$$2g(\nabla_{X}Y,Z)
= Xg(Y,Z) + Yg(Z,X) - Zg(X,Y)
- g(X,[Y,Z]) + g(Y,[Z,X])
+ g(Z,[X,Y]).$$
(4.8)

In view of (4.2), (4.3), (4.7) and (4.8) we get $2g(\nabla_{E_1}E_3, E_1)$

$$2g(\nabla_{E_1}E_3, E_1)$$
= $E_1g(E_3, E_1) + E_3g(E_1, E_1) - E_1g(E_1, E_3)$
 $-g(E_1, [E_3, E_1]) - g(E_3, [E_1, E_1]) + g(E_1, [E_1, E_3])$
= $-2g(E_1, E_1)$

Similarly, we can obtain

$$2g(\nabla_{E_1}E_3, E_2) = 0 = -2g(E_1, E_2)$$

and
$$2g(\nabla_{E_1}E_3, E_3) = 0 = -2g(E_1, E_3)$$
.

From above we can write $2g(\nabla_{E_1}E_3, X) = -2g(E_1, X)$ for all $X \in \chi(M)$. Thus $\nabla_{E_1}E_3 = -E_1$.

Proceeding same way we obtain

$$\begin{cases} \nabla_{E_{1}} E_{3} = -E_{1}, \nabla_{E_{1}} E_{2} = 0, \\ \nabla_{E_{1}} E_{1} = -E_{3}, \nabla_{E_{2}} E_{3} = -E_{2}, \\ \nabla_{E_{2}} E_{2} = -E_{3}, \nabla_{E_{2}} E_{1} = 0, \\ \nabla_{E_{3}} E_{3} = 0 = \nabla_{E_{3}} E_{2} = \nabla_{E_{3}} E_{1}. \end{cases}$$
(4.9)

Now, we have

$$\begin{split} \left(\nabla_{E_1}\varphi\right) & E_1 = \nabla_{E_1}\varphi E_1 - \varphi \nabla_{E_1} E_1 \\ & = -\nabla_{E_1} E_1 + \varphi \left(E_3\right) \\ & = E_3. \end{split}$$

Again, from definition and by the use of (2.5) we obtain

$$(\nabla_{E_1} \varphi) E_1 = g(E_1, E_1) E_3 + \eta(E_1) E_1 + 2\eta(E_1) \eta(E_1) E_3 = E_3.$$

Similarly, we obtain other relations. Thus we have

$$\begin{cases}
(\nabla_{E_1}\varphi)E_1 = E_3, (\nabla_{E_1}\varphi)E_2 = 0, \\
(\nabla_{E_1}\varphi)E_3 = -E_1, (\nabla_{E_2}\varphi)E_1 = 0, \\
(\nabla_{E_2}\varphi)E_2 = E_3, (\nabla_{E_2}\varphi)E_3 = -E_2, \\
(\nabla_{E_3}\varphi)E_1 = 0, (\nabla_{E_3}\varphi)E_2 = 0, \\
(\nabla_{E_3}\varphi)E_3 = 0.
\end{cases} (4.10)$$

From (4.5), (4.6), (4.9) and (4.10), we see that the equations (2.1) - (2.5) are satisfied by the manifold M, for $E_3 = \xi$. Hence (φ, ξ, η, g) is an LP-Sasakian structure in M. Consequently $M^3(\varphi, \xi, \eta, g)$ is an LP-Sasakian manifold.

Now, the Riemannian curvature tensor is defined by

$$R(X,Y)Z = \nabla_{X}\nabla_{Y}Z - \nabla_{Y}\nabla_{X}Z - \nabla_{X}Z -$$

By virtue of (4.7), (4.9) and (4.11) we obtain

$$R(E_{1}, E_{2})E_{3} = \nabla_{E_{1}}\nabla_{E_{2}}E_{3} - \nabla_{E_{2}}\nabla_{E_{1}}E_{3} - \nabla_{[E_{1}, E_{2}]}E_{3}$$
$$= -\nabla_{E_{1}}E_{2} + \nabla_{E_{2}}E_{1} = 0.$$

Similarly, we obtain

Similarly, we obtain
$$\begin{cases}
R(E_1, E_2)E_3 = 0, R(E_2, E_3)E_3 = -E_2, \\
R(E_1, E_3)E_3 = -E_1, R(E_1, E_2)E_2 = E_1, \\
R(E_2, E_3)E_2 = -E_3, R(E_1, E_3)E_2 = 0,
\end{cases}$$

$$R(E_1, E_2)E_1 = -E_2, R(E_2, E_3)E_1 = 0, \\
R(E_1, E_3)E_1 = -E_3, R(E_1, E_1)E_1 = 0,
\end{cases}$$

$$R(E_2, E_2)E_2 = R(E_3, E_3)E_3 = 0.$$
(4.12)

By the use of (4.12) we get $S(E_1, E_1)$

$$= \sum_{i=1}^{3} g(R(E_1, E_i)E_i, E_1) = g(R(E_1, E_2)E_2, E_1) + g(R(E_1, E_3)E_3, E_1) = g(E_1, E_1) + g(-E_1, E_1) = 0.$$

Similarly, we obtain $S(E_2, E_2) = 0$ and

$$S(E_3, E_3) = -2$$
. Thus we have

$$\int S(E_1, E_1) = S(E_2, E_2) = 0,$$
(4.13)

From (2.13) we have

 $S(E_3, E_3) = -2.$

$$S(E_i, E_i) = -\{\lambda g(E_i, E_i) + g(E_i, \varphi E_i)\}.$$

This equation yields

$$S(E_1, E_1) = S(E_2, E_2) = -(\lambda - 1),$$

by the use of (4.3), (4.4) and (4.13) for i = 1, 2.

This implies $\lambda = 1 > 0$, for i = 1,2. And

$$S(E_3, E_3) = \lambda,$$
 for $i = 3$.

This yields $\lambda = -2 < 0$. Since $\lambda = 1 > 0$ for i = 1,2 and $\lambda = -2 < 0$ for i = 3, this is an example of expanding and shrinking Ricci soliton in 3-dimensional LP-Sasakian manifold.

5. Conclusions

In this paper, we have investigated that the Ricci soliton in a (2n+1)-dimensinal LP-Sasakian manifold is shrinking. It is also proved that Ricci solitons in an LP-Sasakian manifold satisfying the derivation conditions $R(\xi, X)W_2 = 0$,

$$W_2(\xi, X).W_4 = 0$$
 and $W_4(\xi, X).W_2 = 0$ are shrinking but are steady for the condition $W_2(\xi, X).S = 0$.

References

- [1] R. S. Hamilton, The Ricci flow on surfaces, Mathematical and general relativity (Santa Cruz. CA. (1986) 237-262.
- [2] T. Chave, G. Valent, Quasi-Einstein metrics and their renoirmalizability properties, Helv Phys. Acta. 69 (1996) 344-347.
- [3] D. H. Friedan, Nonlinear models in $2+\varepsilon$ dimensions, Ann. Physics. 163 (1985) 318-419.
- [4] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, ArXiv: math.DG/02111159vl, 2002.
- [5] H. G. Nagaraja, C.R. Premalatha, Ricci solitons in Kenmotsu manifolds, J. of Mathemati-cal Analysis. 3(2) (2012) 18-24.
- [6] V.V. Reddy, R. Sharma, S. Sivaramkrishan, Space times through Hawking-Ellis constru-ction with a back ground Riemannian metric, Class Quant. Grav. 24 (2007) 3339-3345.
- [7] R. Sharma, Certain results on K-contact and (k, μ) -contact manifolds, J. of Geometry. 89 (2008) 138-147.
- [8] M.M. Tripathi, Ricci solitons in contact metric manifold, ArXiv: 0801. 4222vl [math. D. G.], 2008.
- [9] K. Matsumoto, On Lorentzian paracontact manifolds, Bull. of Yamagata Univ., Nat. Sci. 12 (1989) 151-156.
- [10]I. Mihai, R. Rosca, On Lorentzian P-Sasakian manifolds, Classical Analysis, World Scientific Publ. 1992, 155-169.
- [11]U.C. De, K. Matsumoto, A.A. Shaikh, On Lorentzian para-Sasakian manifolds, Rendicontidel Seminaro Matemetico di messina, Serie II, Supplemento al. 3 (1990) 149-158.
- [12]K. Matsumoto, I. Mihai, On a certain transformation in Lorentzian para-Sasakian manifold, Tensor N. S. 47 (1988) 189-197.
- [13] A.A. Shaikh, S. Biswas, On LP-Sasakian manifolds, Bull. Malaysian Math. Sci. Soc. 27 (2004) 17-26.
- [14] G.P. Pokhariyal, R.S. Mishra, Curvature tensors and their relativistics significance, Yokohama Math. J. 18 (2) (1970), 105-108.
- [15]G.P. Pokhariyal, Curvature tensors and their relativistics significance III, Yokohama Math. J. 21 (1973) 115-119.