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In this paper we study Ricci solitons in Lorentzian para-Sasakian manifolds. It is
proved that the Ricci soliton in a (2n +1)-dimensinal LP-Sasakian manifold is
shrinking. It is also shown that Ricci solitons in an LP-Sasakian manifold
satisfying the derivation conditions R({;‘, X )W2 =0, Wz(é:, X )W4 =0 and
w, (f, X ).W2 = 0 are shrinking but are steady for the condition ¥, (f, X ).S =0.

Finally, we give an example of 3-dimensional LP-Sasakian manifold and prove
By that the Ricci soliton is expanding and shrinking in this manifold.
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1. Introduction

A Ricci soliton is a natural generalization of an
Einstein metric and is defined on a Riemannian
manifold (M , g). A Ricci soliton is a triple
(g, V,l) with ¢ a Riemannian metric, V a
vector field and 2 areal scalar such that
L,g+2S+2g=0, (1.1)

where S is the Ricci tensor and L, g denotes the
Lie derivative of g along a vector field v [1].
The Ricci soliton is said to be shrinking, steady
and expanding according as 1<0,4=0 and

A > 0respectively. Compact Ricci solitons are
the fixed points of the Ricci flow

% _
or
projected from the space of metrics onto its

quotient modulo diffeomorphism and scalings
and often arise as blow-up limits for the Ricci
flow on compact manifolds.

Metrics satisfying (1.1) are interesting and
useful in physics and often are referred as

=28

quasi-Einstein (eg, see [2], [3]). The Ricci flow
was used by Perelman to prove the Poincare's
conjecture theorem and the Thurston's
geometrization conjecture theorem in topology
[4]. Ricci solitons have also been studied by
[5], [6], [7], [8] and others.

On the other hand, the notion of a Lorentzian
para-Sasakian manifold was introduced by
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Matsumoto [9]. Mihai and Rosca defined the
same notion independently and obtain several
results on this manifold [10]. LP-Sasakian
manifolds have also been studied by [11], [12],
[13] and others. In this paper, we prove some
derivation conditions for Ricci solitons in LP-
Sasakian manifolds. We investigate shrinking
property of Ricci soliton in a LP-Sasakin
manifold when a vector field ¥ is collinear

with &£ We obtain some results of Ricci
solitons on LP-Sasakian manifolds satisfying
the conditions  R(& X)W, =0, W,(£,x)S =0,
w,(&,Xx)w, =0and w,(&x)m, =0
respectively. Finally, we give an example of 3-
dimensional LP-Sasakian manifold which is

expanding and shrinking Ricci soliton.

2. Preliminaries

Let Mbe a (2n+1)—dimensional differentiable

manifold. Then M is said to be a Lorentzian
para-Sasakian manifold (briefly LP-Sasakian
manifold), if it admits a (1, 1) tensor field ¢, a

contravariant vector field &, a 1-form » and a

Lorentzian metric g which satisfy

n(£)=-1¢°(x)=x +n(x)z, 2.1

=0, ﬂ(‘ﬂX =0,

glpx. o) = g(X.7)+ (X )n(¥) (2.2)
g(x.&)=n(x), 2.3)

V,.& =X, (2.4)

(v o) = g(x.v)e+n(v)x +20(x Jn(¥)e. (2.5)

for all X,YeIM,where Vdenotes the
covariant differentiation with respect to the
Lorentzian metric g [9, 10].

If we put,

(X, 7)=g(x,pr),
then ®is a symmetric (0,2) tensor field [9].
Since the 1-form 7 is closed in an LP-Sasakian
manifold we have [12], [9]

(V. )y =d(x,Y)=g(x,0Y)=g(ax,v)(2.6)

Ina (Zn + 1)-dimensi0nal LP-Sasakian manifold
the following relations hold

) 2lr) 27
R(& X)) =g(x,v)e—n(r)x, (2.8)
R(x,Y)e=n(r)x —n(x)r, (2.9)
S(x.&)=2nn(x), (2.10)
S(px,ov)=S(x,7)+2nn(x)p(¥),  (2.11)

for any vector fields X,Y,Z, where R and S are
the Riemannian curvature tensor and the Ricci
tensor of the manifold, respectively [11].

Let (g, V,/l) be a Ricci soliton in a (2n+1)—

dimensional LP-Sasakian manifold A7. Then
we have

(L.g)x.7)=g(v,&7)+g(v,& x)
Using (2.4) and (2.6) in this equation we get

(z.g)Xx.7)=2¢(x,07) (2.12)
From (1.1) and (2.12) we obtain

s(x.y)=-tag(x.v)+ g(x, v, (2.13)
r=—2n+1)4, provided rp=0.  (2.14)

In view of (2.1), (2.3) and (2.13) we get
S(x.&)=-an(x) (2.15)

3. Results and Discussion

Now, we have the following results and their
proofs

Theorem 3.1: If in a (21+1)-dimensional LP-
Sasakian manifold the metricgis a Ricci
soliton and ¥ is pointwise collinear with ¢,
then Vis a constant multiple of £and gis
shrinking.

Proof: Let Mbe a (2n+1)-dimensional LP-
Sasakian manifold with Lorentzian metric g.

A Ricci soliton is a generalization of an
Einstein metric and defined on a Riemannian
manifold (M, g) by (1.1). Let ¥ be pointwise
collinear with ¢ie., V=c& where ¢ is a
function on a (2n +1)-dimensional LP-Sasakian

mani-fold. Then from (1.1), we have
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(.g)x,v)+25(x,v)+22g(x,¥)=0. (3.1)
Further simplification and use of (2.4) in (3.1)
yields

eg(pX.¥)+ (Xe)r(r) eglor, X)

AN )+ 25(x., Py iss(s ¥)=0. (32 By
virtue of (2.6) and (3.2) we obtain
2cg( X, oY )+ Ye
+2gbg X(pY)>+ 2(,1g2;/(( Y)) —(() )ﬂ( ) (3.3)

Putting ¥ =¢ in (3.3) and using (2.1), (2.3) and
(2.10) we get
{(&)+4n+22}m(x)-(xc)=0.
Taking X =¢ in (3.4) gives

&= —(2n + /1).

view of (3.4) and (3.5) we obtain
Xc= (2n + /1)17()(),

which implies

de=(2n+2)n. (3.6)
Taking exterior derivative on both sides of
(3.6) we get

(2n+2)dn =0, (3.7)

since dn=#0, we have 2n+1=0. Hence cis
constant from (3.6). Consequently, the
equation (3.3) reduces to
S(x,7)=-{ig(x,7)+cg(x.0v).  (3.9)
Comparing (2.13) and (3.8) we get c=1.
Again, 2n+ A =0implies that A=-2n<0 for
n>1.Thus the Ricci soliton is shrinking. This
proves the theorem.

Theorem 3.2: A Ricci soliton in a W, -semi-
symmetric LP-g454kian manifold of dimension

(3.4)

3.5 In

(2n+1) is shrinking.

Proof: Let Mbe a (2n+1)-dimensional LP-
Sasakian manifold admitting a Ricci soliton
(g.7,2). The W, -curvature tensor in M is
defined by [14]

w(x,v,2,7)=R(X.,7,2,T)+ Zi [g(x, Z)Ric(Y,T)
~ (v, 2)Rie(x, T,

this can be written as

w,(x.v)z=R(xX,Y)Z + 2i[ g(x,z)or
~g(v, Z)QX]?
Putting X =¢& in (3.9) and using (2.3) and (2.8)
we get
w,(e.¥)z = g(v.2)e-n(z)y
+21—n[77( z)oy - ¢(v,z)o¢)

Taking inner product on both sides of (3.9)
with & and using (2.7) and (2.15) we obtain

n(Wz(X,Y)Z)=(1+%j[g(YsZ)"(X) (3.11)

~g(X. Z)n(Y )1

Suppose that the condition
R(.f X ) (Y VA )U 0 holds in M.Then by
definition we have

R(z, x )W, éY Z;U w,(R Eé,X))Y,Z)U

“w, (v R X))z -w,(v.2)r(e X0 (3.12) for
=0
all vector fields X,Y,Z,U on M.
In view of (2.8) and (3.12) we get

(3.9)

(3.10)

fggx Y(%/ {U)ig’l(qu(% %)U) (3.13)
—g(x,z2)p (v, & zZWw. (v, x
—g(x,v)w, YZ).§+;7UW Y,Z)X

Taklng inner product on both sides of (3.13)
with & and using (2.1) we obtain

em, (v, z w,(v,z)u)n(x)

2)0. %)+, (v,
+glX,Y Wz &,z _77Y77W2 X.,Z
+g\ X, Z W \Y,E U )—nZ Ih\w, (Y, X (314) In
+gXU77 \Y,Z)E)—-n\U n\W,\Y,Z )X

view of (3.9), (3.11) and (3.14), we get
2(r(v.2z)U, X)+L[g(Y v)s(x,z)

-g(z.u)s(x, Y)]+[l+—)[77(X)1g(U . Z)n(Y)

—g(r, U)ézg})n )g))( 1;)({g z U2+ (U ) (2):

“a(r ) X.U)n(z
gXZ{g(YU +n(¥)n(U)

-\ Z Ng\ X, U J)\Y )—g\Y,U )\ X )}
—-n U%{giX,Z;n Yg—g XY %Z;}]: 0.

(3.15)
Let {e,. 1= 1,2,.‘.,2n+1} be an orthonormal basis
of the tangent space at any point of the
manifold. Putting X=Y=e¢ in (3.15) and

taking summation over i,1<i<2n+1, we get
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s(z.u)= %g(z,m

Again taking an orthonormal frame field at any
point of the manifold and contracting over Z
and Uin (3.16) e have 1=-2n<0,for n>1.

(3.16)

Hence the Ricci soliton is shrinking. This
completes the proof of the theorem.
Theorem 3.3: Let M be a (2n+1)-dimensi0nal
LP-Sasakian manifold and (g, v, /1) be a Ricci
soliton gatjsfying the condition w,(& X)S =0in
M ,then the Ricci soliton is steady.
Proof: Let Mbe a (2n+1)-dimensional LP-
Sasakian manifold and (g, V,/l) be a Ricci
soliton in M. Suppose that the condition
w,(& x)S(Y,Z)=0 holds in M, then we have
s, (&, x)v,z)+s(v.w,(&,x)z)=0. (3.17) In
view of (3.10), (2.15) and (3.17) we obtain
Helrn(2)+ o0 200} L 15(0X.Z)n(v)
+ SéQX YI(Z)+ SgX, ZgngY)Jr s(x,v)n(2)
+g(x, Y}S(Qf,ZS+g X,7)s(o¢,v)=o.

(3.18)
Putting Z=¢ in (3.18) and using (2.1), (2.3)

and (2.15) we get

s(ox.y)
= 20044(2+ ). )+ ()
+5(X,¥)=(x)S(E V)L
(3.19)

Again taking Y =¢ in (3.19) and using (2.1),
(2.3) and (2.15) we obtain

(2n—1)2n(x)=0, (3.20)
since n(X);t 0,(3.20) implies that A =0.Thus
the Ricci soliton is steady. This proves the
theorem.

Theorem 3.4: A Ricci soliton in a (22+1)-
dimensional LP-Sasakian manifold satisfying
the condition (&, X)W, =0 is shrinking under

the condition #.¢ = 0.

Proof: Let Mbe a (2n+1)-dimensional LP-

Sasakian manifold and (g, V,ﬂ,) be a Ricci
soliton in M.The W, -curvature tensor in M is
defined by [15]
w(x.,Y,2,T)
— R(x,¥,2,7)+ ~—1g(X, Z)Ric(Y,T)
— g(X.Y)Ric(Z,T)]
which can be written as
w(x.v)z
= R(x, Y)Z+$[g(X,Z)QY
—g(Xx,Y)071.
Putting X =¢ in (3.21) and using (2.3) and
(2.8) we obtain
w,(&.Y)z = g(v.2)s-n(z)y
o l2or -n(vjoz} ©2
Taking inner product on both sides of (3.21)
with & and using (2.7) and (2.15) we get

n(w.(x.v)z)

(3.21)

= a(r.2)(x)+ S g(xh(z)  (3.23)
A
(142 Jelr 20t
Now, we assume that the condition

w,(&x)w,(v.ZU=0 holds in M, then we

have

w (& X (v, Z)u
~W,(w (& X)Y.Z

WY W(eX)z

-w,(v.Z)W, (& x

In view of (3.10) and (3.24) we get
e (v. 2. x)s —n(w,(v.2)U)x
(v, 2)U)ox
—g(w,(v.z).x)os—n(y)w,(ox,.z
+g(x.,y E,Z2W —n(z Y,0X U
+gXZ§W YQ? % %WgZ)QX
+g(x,U g(X )W (.2

W,
+77YI/V4X,Z —gXZW Y,E
+n(zw (v, x)Uu —g(x,uWw,(v,z)e

+n(uWw,(v,z)x =o.

(3.24)

(3.25)
Taking inner product on both sides of (3.25)

with & and using (2.1), (2.3) and (2.15) we

obtain
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(15 el . 2 x )l 2)0)

+ 2i (Y)W, (0X, 2)U) — (X, Y)n(W,(Q&, Z)U)
+(Z2Wm(w,(v,0x)0)-g(x, 2 m(w,(v,08)U
+ (0w, (v, 2)ox) - e(x.U)n(w, Y,Z%é )

v+, Y)w, (£, 2)0)-n(¥)n(w,(x,z)U
+glx, 2w, (v, W )=n(2)m(w, (v, x U
+gx,unw,(v,z)e)-nUmw,(v,z)x)=o.

(3.26)
In view of (3.21), (3.23), (3.26) and (2.15) we
get

(1+i)[g(R(Y zW, x)-g(x,v)g(z,0)
+—{g(Y v)s(x,z)-g(v,z)s(x,v)

+ S(X Zn(Um(v)+ ﬂg(X Z2)(U)n(y)

—2g(v.z)e(x. U )+ HZ g(x.z)g(v.u)

5 e(X.Y)+ SV )@n(2) =o.
(3.27)

Let i :1,2,...,2n+1}be an orthonormal basis of

the tangent space at any point of the manifold.

Putting X =Y =e¢ in (3.27) and summing over

i, 1<i<2n+1,we get

S(U.z)=2ng(U,2)

. {(znﬂ)mr}n(u)n(z) (3.28)

2n+ A

Again taking U =27 =¢ and using (2.1), (2.3),
(2.14) and (2.15) we get A =-2n<0.Thus 4 is
negative. This concludes that the Ricci soliton
is shrinking. This completes the proof of the
theorem.

Theorem 3.5: Let M be a (2n+1)-dimensional
LP-Sasakian manifold and (g, V,l) be a Ricci

soliton inM.If gsatisfies the condition
I/I/;(gf,X).W2 =0,then gis shrinking under the
condition #r.¢ = 0.

Proof: Let M be a (2n+1)-dimensional LP-
Sasakian manifold and (g,V,ﬂ,) be a Ricci
soliton in M. Suppose that the condition
m(g,X).VK(Y,Z)U:O holds in M, then by
definition

we have

o=w,(ex(v.z)u-w(w (s x). 2
-w,(v.w (& x)z)u -w (v 2w, (e x .
(3.29)
By virtue of (3.22) and (3.29) we have

gm.(v.2)u.x)s —n(w.(v.z)u)x
1
+2—[f7(Wz(Y,Z)U)QX—n(X)QWz(Y,Z)U
—a(rw.(ox.z) +n(x W, (ov.z)U
(2w, (v.ox U +n(x W, (v,0z
—n(OW.(v.2)ox + n(x W, (v.z)oU]

—gx.yw ez +n(yw(x,z
—gx,zw (v.eu+n(zw, (v, x
—gx.uw, (v.z)e+nU W, (v,z)x

=0.
Taking inner product on both sides of (3.30)
with &and using (2.1), (2.3) and (2.15) we

obtain

gm.(v.2)u. X )+ n(x n(w.(v. 2)0)
+2—Mn( ) (. (Y Z)U) n(gf) g(om,(v.2)u.¢)

(n y
SRR

(3.30)

+gXY WAEZ )W )-nlY WXZU

+e\ X, Zm\WA\Y,EWU )-m\Z In\W Y, X U

+g\ X, U m\W Y, Z)E)-n\U m\W\Y,Z)X )=0.
(3.31)

In view of (3 9) and (3.11), (3.31) yields

e(R(yv. 2z, X)+

—e(z.U)s(x. Y),{ + 2 (e (X 2)
—a(x. V) (Z.0)+ 5.0 ) (X n(2)

1
— S(Z,UD17(XDH77(Y) + = S(X, Zy77(YD77(U)

(v, U)s(x,z)

1
7ES(X, YIn(U)Hr(Z);]1 = 0.

(3.32)
Let {e,, ti :1,2,...,2n+1} be an orthonormal basis

of the tangent space at any point of the
in (3.32) and
summing over i,1<i<2n+1, we get

s(z,u)

_ (8}13 —:4nzﬂ, + anjg(U, Z)

manifold. Putting X =Y =e¢,

(3.33) Again,
4n’* +6n+24

6nAd+2nr+31 + Ar
(A ()

putting Z=U=¢ in (3.33) and using (2.1),
(2.3) and (2.15) we get
A +4nd+4n’ =0.

(3.34)
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This equation gives A =-2n,-2n . Hence A is
negative. This concludes that the Ricci soliton
is shrinking. Thus the theorem is proved.

From theorem 3.4 and theorem 3.5 we can state
next theorem

Theorem 3.6: Ricci solitons in a (2n+1)-
dimensional LP-Sasakian manifold satisfying
the derivation conditions (£ X)W, =0and
w,(&, X)W, =0 are equivalent.

Now we give an example of LP-Sasakian
manifold.

4. Example for 3-dimensional LP-Sasakian
Manifold

Let us consider a 3-dimensional manifold
M={(x,y,z):(x,y,z)eR3},Where (x,y,z) are
standard coordinates in R'. We choose the
vector fields

0 (o o B
E=-—FE =¢|———|E =—
oy 0z Oy ox
which are linearly independent at each point of
M.Let gbe the Lorentzian metric defined by

g(El,EZ):g(EZ,E3)=g(E1,E3)=O, (4.2)
g(E.E)=g(E,.E)=g(E, E)=-1. (4.3) Let 5
be a 1-form defined by n(Z): g(Z, ES) for any
vector field Zon M.Let pbe a (1, 1) tensor
field defined by

oE)=-E,o(E,)=-E, ¢(E,)=0.  (4.4) The
linearity property of ¢ and g yields that
n(E.)=-1,¢'(U)=U+n(V)E, (4.5)
g(o7,00) = g(2,0)+n(2)(v), (4.6)

for any vector fields Z,U on M.Thus for
E =¢(p.6.n.2)
paracontact structure on M.

By the definition of Lie bracket and (4.1) we
have

[£.E]=-E.[E.E]=0.[E,.E]=-E. (4.7)
Let vbe the Levi-Civita connection with

. (4.1

defines a  Lorentzian

respect to the Lorentzian metric g, the Koszul
formula is defined as

2¢(v,v,z)
= xXe(v.z)+ve(z, x)-z2(X.Y) (4.8)
— gEX,[[Y, Z(%Jr 2(v.[z. x])
+g(z.[x. 7))
In view of (4.2), (4.3), (4.7) and (4.8) we get
Zg(vﬁ E3 , E,
- Eg(E, . E)+ Eg(E ,El[)—El (E.E,)
PN 5 | R N 1 | G
= 2¢(E,E).
Similarly, we can obtain
28(V, E,,E,)=0=-2¢(E,E,)
and 2¢(V, E,, E,)=0=-2¢g(E,, E, )
From above we can write
28(V, E,, x)=—2¢(E,, x) for all X e (M) Thus
V,E =-E,.
Proceeding same way we obtain
V,E =—E,V, E =0,

; _E'é’szEfi = _E’)7

EZEZ _Ez’szEl 205 )

VE3E3 =0= VESE2 = VE3E.-
Now, we have
(vElgD)El = VEI(DEI _(DVEIEI
= _VEIEI + q)(E%)
=E..
Again, from definition and by the use of (2.5)
we obtain

(VEI )El
4(5.5 )6 +n( ), +20(E W ),
-E,.
Similarly, we obtain other relations. Thus we
have
V,0)E =E,(V, 0)E, =0,
VE|(p E, = _El’(sz(p)El =0,
VEZ¢) E, = E, (Vlsz(p)Es =-E,,
Ve@)E =0,\V, p)E, =0,
V,.0)E, =0.
From (4.5), (4.6), (4.9) and (4.10), we see that
the equations (2.1) - (2.5) are satisfied by the
manifold M,for E, =& Hence (go, &, g) is an
LP-Sasakian structure in M.Consequently
M 3((p, En, g) is an LP-Sasakian manifold.
Now, the Riemannian curvature tensor is
defined by

R(X.Y)Z=V V,Z-VV Z-V _ 7.(411)
[ 1]

V. (4.9)
\%

(4.10)

By virtue of (4.7), (4.9) and (4.11) we obtain
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R(E,E,)E,=V,V, E -V, V, E -V, E
=V ,E,+V _E =0.

Similarly, we obtain

R(E ,E,)E, =0, R(E( E,)E, =—E,,
R(E.E)E =—E,R(EE)E, = E,,
R(E,.E)E, =—E,.R(E, E§E —o, (412)
R(E.E )E =—E, R(E,,E)E, =0,
R(E,E)E =—E,,R(E,E)E =0
rR(E.E)E, = rR(E,.E.)E, = 0.
By the use of (4.12) we get
S(EI,E)
=S ok (5, 5 )6 ) = e(R(E, £ )5 )
+g(R(E E,)E,. E,)
=g E.E)+¢(CE.E)
Similarly, we obtaln S(E,,E, ) =0and

S(E3 LE, ) =-2.Thus we have
s(e,E)=s(E, E,)=0,
{S(Ez, E)=-2.
From (2.13) we have
S(E.E)=-{ag(E.E )+ g(E.¢E,)}.
This equation yields
S(E.E)=5(E,,.E,)=—(2-1),
by the use of (4.3), (4.4) and (4.13) for i=1,2.
This implies 2=1> 0, for i =1,2. And

(4.13)

S(E,.E,) = A, for i=3.
This yields 21=-2<0. Since A=1>0for
i=12and A=-2<0 for i=3,this is an

example of expanding and shrinking Ricci
soliton in 3-dimensional LP-Sasakian
manifold.

5. Conclusions

In this paper, we have investigated that the
Ricei soliton in a (2n+1)-dimensinal LP-

Sasakian manifold is shrinking. It is also
proved that Ricci solitons in an LP-Sasakian
manifold satisfying the derivation conditions

R(& x)w, =0,
wy(e.x)w, =oand  w,(&x)w, =0
shrinking but are steady for the condition

Wz(fyX).S=0.

are
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