Journal of Physical Sciences

 BIBECHANA
Editor-in-Chief

Devendra Adhikari

Professor, Physics
MMAMC, T.U.

Published by Department of Physics Mahendra Morang Adrash Multiple Campus T.U., Biratnagar

BIBECHANA

ISSN 2091-0762 (Print), 2382-5340 (Online)
Journal homepage: http://nepjol.info/index.php/BIBECHANA
Publisher: Department of Physics, Mahendra Morang A.M. Campus, TU, Biratnagar, Nepal

Ricci solitons on Lorentzian para-Sasakian manifolds

Riddhi Jung Shah

Department of Mathematics, Janata Campus, Nepal Sanskrit University, Dang, Nepal
Email: shahrjgeo@gmail.com

Article Information
Received: June 5, 2019
Accepted: December 5, 2019
Keywords:
Ricci soliton
LP-Sasakian manifold
W_{2}-curvature tensor
W_{4}-curvature tensor

ABSTRACT

In this paper we study Ricci solitons in Lorentzian para-Sasakian manifolds. It is proved that the Ricci soliton in a $(2 n+1)$-dimensinal LP-Sasakian manifold is shrinking. It is also shown that Ricci solitons in an LP-Sasakian manifold satisfying the derivation conditions $R(\xi, X) \cdot W_{2}=0, W_{2}(\xi, X) \cdot W_{4}=0$ and $W_{4}(\xi, X) \cdot W_{2}=0$ are shrinking but are steady for the condition $W_{2}(\xi, X) \cdot S=0$. Finally, we give an example of 3-dimensional LP-Sasakian manifold and prove that the Ricci soliton is expanding and shrinking in this manifold.

DOI: https://doi.org/10.3126/bibechana.v17i0.24341
This work is licensed under the Creative Commons CCBY-NC License.
https://creativecommons.org/licenses/by-nc/4.0/

1. Introduction

A Ricci soliton is a natural generalization of an Einstein metric and is defined on a Riemannian manifold (M, g). A Ricci soliton is a triple (g, V, λ) with g a Riemannian metric, V a vector field and λ a real scalar such that

$$
\begin{equation*}
L_{V} g+2 S+2 \lambda g=0 \tag{1.1}
\end{equation*}
$$

where S is the Ricci tensor and $L_{v} g$ denotes the Lie derivative of g along a vector field V [1]. The Ricci soliton is said to be shrinking, steady and expanding according as $\lambda<0, \lambda=0$ and $\lambda>0$ respectively. Compact Ricci solitons are the fixed points of the Ricci flow
$\frac{\partial g}{\partial t}=-2 S$
projected from the space of metrics onto its quotient modulo diffeomorphism and scalings and often arise as blow-up limits for the Ricci flow on compact manifolds.
Metrics satisfying (1.1) are interesting and useful in physics and often are referred as quasi-Einstein (eg, see [2], [3]). The Ricci flow was used by Perelman to prove the Poincare's conjecture theorem and the Thurston's geometrization conjecture theorem in topology [4]. Ricci solitons have also been studied by [5], [6], [7], [8] and others.
On the other hand, the notion of a Lorentzian para-Sasakian manifold was introduced by

Matsumoto [9]. Mihai and Rosca defined the same notion independently and obtain several results on this manifold [10]. LP-Sasakian manifolds have also been studied by [11], [12], [13] and others. In this paper, we prove some derivation conditions for Ricci solitons in LPSasakian manifolds. We investigate shrinking property of Ricci soliton in a LP-Sasakin manifold when a vector field V is collinear with ξ. We obtain some results of Ricci solitons on LP-Sasakian manifolds satisfying the conditions $\quad R(\xi, X) \cdot W_{2}=0, W_{2}(\xi, X) \cdot S=0$, $W_{2}(\xi, X) \cdot W_{4}=0$ and $\quad W_{4}(\xi, X) \cdot W_{2}=0$ respectively. Finally, we give an example of 3dimensional LP-Sasakian manifold which is expanding and shrinking Ricci soliton.

2. Preliminaries

Let M be a $(2 n+1)$-dimensional differentiable manifold. Then M is said to be a Lorentzian para-Sasakian manifold (briefly LP-Sasakian manifold), if it admits a $(1,1)$ tensor field φ, a contravariant vector field ξ, a 1-form η and a Lorentzian metric g which satisfy

$$
\begin{align*}
& \eta(\xi)=-1, \varphi^{2}(X)=X+\eta(X) \xi, \tag{2.1}\\
& \varphi \xi=0, \eta(\varphi X)=0, \\
& g(\varphi X, \varphi Y)=g(X, Y)+\eta(X) \eta(Y), \tag{2.2}\\
& \quad g(X, \xi)=\eta(X), \tag{2.3}
\end{align*}
$$

$\nabla_{x} \xi=\varphi X$,
$\left(\nabla_{X} \varphi\right) Y=g(X, Y) \xi+\eta(Y) X+2 \eta(X) \eta(Y) \xi,(2.5)$
for all $X, Y \in T M$, where ∇ denotes the covariant differentiation with respect to the Lorentzian metric $g[9,10]$.
If we put,

$$
\Phi(X, Y)=g(X, \varphi Y)
$$

then Φ is a symmetric $(0,2)$ tensor field [9]. Since the 1 -form η is closed in an LP-Sasakian manifold we have [12], [9]
$\left(\nabla_{X} \eta\right) Y=\Phi(X, Y)=g(X, \varphi Y)=g(\varphi X, Y)$.

In a $(2 n+1)$-dimensional LP-Sasakian manifold the following relations hold

$$
\begin{align*}
& \eta(R(X, Y) Z) \tag{2.7}\\
& =g(Y, Z) \eta(X)-g(X, Z) \eta(Y), \\
& R(\xi, X) Y=g(X, Y) \xi-\eta(Y) X, \tag{2.8}\\
& R(X, Y) \xi=\eta(Y) X-\eta(X) Y, \tag{2.9}\\
& S(X, \xi)=2 n \eta(X) \tag{2.10}\\
& S(\varphi X, \varphi Y)=S(X, Y)+2 n \eta(X) \eta(Y), \tag{2.11}
\end{align*}
$$

for any vector fields X, Y, Z, where R and S are the Riemannian curvature tensor and the Ricci tensor of the manifold, respectively [11].
Let (g, V, λ) be a Ricci soliton in a $(2 n+1)$ dimensional LP-Sasakian manifold M. Then we have

$$
\begin{equation*}
\left(L_{\xi} g\right)(X, Y)=g\left(\nabla_{x} \xi, Y\right)+g\left(\nabla_{\gamma} \xi, X\right) \tag{2.12}
\end{equation*}
$$

Using (2.4) and (2.6) in this equation we get $\left(L_{\xi} g\right)(X, Y)=2 g(X, \varphi Y)$.
From (1.1) and (2.12) we obtain $S(X, Y)=-\{\lambda g(X, Y)+g(X, \varphi Y)\}$,
$r=-(2 n+1) \lambda$, provided tr. $\varphi=0$.
In view of (2.1), (2.3) and (2.13) we get

$$
\begin{equation*}
S(x, \xi)=-\lambda \eta(x) \tag{2.14}
\end{equation*}
$$

3. Results and Discussion

Now, we have the following results and their proofs
Theorem 3.1: If in a $(2 n+1)$-dimensional LPSasakian manifold the metric g is a Ricci soliton and V is pointwise collinear with ξ, then V is a constant multiple of ξ and g is shrinking.
Proof: Let M be a $(2 n+1)$-dimensional LPSasakian manifold with Lorentzian metric g. A Ricci soliton is a generalization of an Einstein metric and defined on a Riemannian manifold (M, g) by (1.1). Let V be pointwise collinear with ξ i.e., $V=c \xi$ where c is a function on a $(2 n+1)$-dimensional LP-Sasakian mani-fold. Then from (1.1), we have
$\left(L_{c \xi} g\right)(X, Y)+2 S(X, Y)+2 \lambda g(X, Y)=0$.
Further simplification and use of (2.4) in (3.1) yields

$$
\begin{align*}
& c g(\varphi X, Y)+(X c) \eta(Y)+c g(\varphi Y, X) \tag{3.2}\\
& +(Y c) \eta(X)+2 S(X, Y)+2 \lambda g(X, Y)=0 .
\end{align*}
$$

virtue of (2.6) and (3.2) we obtain
$2 c g(X, \varphi Y)+(X c) \eta(Y)+(Y c) \eta(X)$
$+2 S(X, Y)+2 \lambda g(X, Y)=0$.
Putting $Y=\xi$ in (3.3) and using (2.1), (2.3) and (2.10) we get
$\{(\xi c)+4 n+2 \lambda\} \eta(X)-(X c)=0$.
Taking $X=\xi$ in (3.4) gives
$\xi c=-(2 n+\lambda)$.
view of (3.4) and (3.5) we obtain
$X c=(2 n+\lambda) \eta(X)$,
which implies
$d c=(2 n+\lambda) \eta$.
Taking exterior derivative on both sides of (3.6) we get
$(2 n+\lambda) d \eta=0$,
since $d \eta \neq 0$, we have $2 n+\lambda=0$. Hence c is constant from (3.6). Consequently, the equation (3.3) reduces to
$S(X, Y)=-\{\lambda g(X, Y)+c g(X, \varphi Y)\}$.
Comparing (2.13) and (3.8) we get $c=1$.
Again, $2 n+\lambda=0$ implies that $\lambda=-2 n<0$ for $n>1$. Thus the Ricci soliton is shrinking. This proves the theorem.
Theorem 3.2: A Ricci soliton in a W_{2}-semisymmetric LP-Sasakian manifold of dimension $(2 n+1)$ is shrinking.
Proof: Let M be a $(2 n+1)$-dimensional LPSasakian manifold admitting a Ricci soliton (g, V, λ). The W_{2}-curvature tensor in M is defined by [14]

$$
\begin{aligned}
W_{2}(X, Y, Z, T)= & R(X, Y, Z, T)+\frac{1}{2 \eta}[g(X, Z) \operatorname{Ric}(Y, T) \\
& -g(Y, Z) \operatorname{Ric}(X, T)],
\end{aligned}
$$

this can be written as
In

$$
\begin{align*}
W_{2}(X, Y) Z= & R(X, Y) Z+\frac{1}{2 n}[g(X, Z) Q Y \tag{3.9}\\
& -g(Y, Z) Q X] .
\end{align*}
$$

Putting $X=\xi$ in (3.9) and using (2.3) and (2.8)
we get

$$
\begin{align*}
W_{2}(\xi, Y) Z & =g(Y, Z) \xi-\eta(Z) Y \\
& +\frac{1}{2 n}[\eta(Z) Q Y-g(Y, Z) Q \xi] . \tag{3.10}
\end{align*}
$$

Taking inner product on both sides of (3.9) with ξ and using (2.7) and (2.15) we obtain

$$
\begin{align*}
\eta\left(W_{2}(X, Y) Z\right)= & \left(1+\frac{\lambda}{2 n}\right)[g(Y, Z) \eta(X) \tag{3.11}\\
& -g(X, Z) \eta(Y)] .
\end{align*}
$$

Suppose that the condition $R(\xi, X) . W_{2}(Y, Z) U=0$ holds in M. Then by definition we have
$R(\xi, X) W_{2}(Y, Z) U-W_{2}(R(\xi, X) Y, Z) U$
$-W_{2}(Y, R(\xi, X) Z) U-W_{2}(Y, Z) R(\xi, X) U$ (3.12) for $=0$
all vector fields X, Y, Z, U on M.
In view of (2.8) and (3.12) we get
$g\left(X, W_{2}(Y, Z) U\right) \xi-\eta\left(W_{2}(Y, Z) U\right) X$
$-g(X, Y) W_{2}(\xi, Z) U+\eta(Y) W_{2}(X, Z) U$
$\left.-g(X, Z) W_{2} Y, \xi\right) U+\eta(Z) W_{2}(Y, X) U$
$-g(X, U) W_{2}(Y, Z)+\eta(U) W_{2}(Y, Z) X$
$-g(X, Z) W_{2}^{2}(Y, Z) \xi+\eta(U) W_{2}^{2}(Y, X) X$
$-g(X, X$
$=0$.
Taking inner product on both sides of (3.13) with ξ and using (2.1) we obtain

$$
\begin{aligned}
& g\left(W_{2}(Y, Z) U, X\right)+\eta\left(W_{2}(Y, Z) U\right)_{n}(X) \\
& \left.+g(X, Z) \eta\left(W_{2}(\xi, Z) U\right)^{2}-\eta(Y) \eta\left(W_{2} X, Z\right) U\right)(X 14) \quad \text { In } \\
& \left.\left.+g(X, Z) \eta\left(W_{2} Y, \xi\right) U\right)-\eta(Z) \eta\left(W_{2} Y, X\right) U\right)(314) \\
& +g(X, U)_{\eta}\left(W_{2}(Y, Z) \xi\right)-\eta(U) \eta\left(W_{2}(Y, Z) X\right) \\
& =0 .
\end{aligned}
$$

view of (3.9), (3.11) and (3.14), we get
$g(R(Y, Z) U, X)+\frac{1}{2 n}[g(Y, U) S(X, Z)$
$-g(Z, U) S(X, Y)]+\left(1+\frac{\lambda}{2 n}\right)[\eta(X)\{g(U, Z) \eta(Y)$
$-g(Y, U) \eta(Z)--g(X, Y)\{g(Z, U)+\eta(U) \eta(Z)\}$
$-\eta(Y)\{g(Z, U) \eta(X)-g(X, U) \eta(Z)\}$
$+g(X) Z)\{g(Y, U)+\eta(Y) \eta(U)\}$
$-\eta(Z)\{g(X, U) \eta(Y)-g(Y, U) \eta(X)\}$
$-\eta(U)\{g(X, Z) \eta(Y)-g(X, Y) \eta(Z)\}\}=0$.
Let $\left\{e_{i}: i=1,2, \ldots, 2 n+1\right\}$ be an orthonormal basis of the tangent space at any point of the manifold. Putting $X=Y=e_{i}$ in (3.15) and taking summation over $i, 1 \leq i \leq 2 n+1$, we get
$S(Z, U)=\frac{r+2 n(2 n+\lambda)}{2 n+1} g(Z, U)$.
Again taking an orthonormal frame field at any point of the manifold and contracting over Z and U in (3.16) we have $\lambda=-2 n<0$, for $n>1$.
Hence the Ricci soliton is shrinking. This completes the proof of the theorem.
Theorem 3.3: Let M be a $(2 n+1)$-dimensional LP-Sasakian manifold and (g, V, λ) be a Ricci soliton satisfying the condition $W_{2}(\xi, X) . S=0$ in M, then the Ricci soliton is steady.
Proof: Let M be a $(2 n+1)$-dimensional LPSasakian manifold and (g, V, λ) be a Ricci soliton in M. Suppose that the condition $W_{2}(\xi, X) . S(Y, Z)=0$ holds in M, then we have $S\left(W_{2}(\xi, X) Y, Z\right)+S\left(Y, W_{2}(\xi, X) Z\right)=0$. (3.17) In view of (3.10), (2.15) and (3.17) we obtain $\lambda\{g(X, Y) \eta(Z)+g(X, Z) \eta(Y)\}-\frac{1}{2 n}\{S(Q X, Z) \eta(Y)$ $+S(Q X, Y) \eta(Z)\}+S(X, Z) \eta(Y)^{2 n}+S(X, Y) \eta(Z)$ $+g(X, Y) S(Q \xi, Z)+g(X, Z) S(Q \xi, Y)=0$.

Putting $Z=\xi$ in (3.18) and using (2.1), (2.3) and (2.15) we get

$$
\begin{align*}
& S(Q X, Y) \\
& =2 n\left[\lambda\left\{(\lambda+1) g(X, Y)+\frac{\lambda}{2 n} \eta(X) \eta(Y)\right\}\right. \\
& \quad+S(X, Y)-\eta(X) S(Q \xi, Y)] . \tag{3.19}
\end{align*}
$$

Again taking $Y=\xi$ in (3.19) and using (2.1), (2.3) and (2.15) we obtain $(2 n-1) \lambda^{2} \eta(X)=0$,
since $\eta(X) \neq 0$, (3.20) implies that $\lambda=0$. Thus the Ricci soliton is steady. This proves the theorem.
Theorem 3.4: A Ricci soliton in a $(2 n+1)$ dimensional LP-Sasakian manifold satisfying the condition $W_{2}(\xi, X) \cdot W_{4}=0$ is shrinking under the condition $\operatorname{tr} \cdot \varphi=0$.

Proof: Let M be a $(2 n+1)$-dimensional LPSasakian manifold and (g, V, λ) be a Ricci soliton in M. The W_{4}-curvature tensor in M is defined by [15]
$W_{4}(X, Y, Z, T)$
$=R(X, Y, Z, T)+\frac{1}{2 n}[g(X, Z) \operatorname{Ric}(Y, T)$
$-g(X, Y) \operatorname{Ric}(Z, T)]$
which can be written as

$$
\begin{align*}
& W_{4}(X, Y) Z \\
& =R(X, Y) Z+\frac{1}{2 n}[g(X, Z) Q Y \tag{3.21}\\
& \quad-g(X, Y) Q Z] .
\end{align*}
$$

Putting $X=\xi$ in (3.21) and using (2.3) and (2.8) we obtain

$$
\begin{align*}
W_{4}(\xi, Y) Z= & g(Y, Z) \xi-\eta(Z) Y \\
& +\frac{1}{2 n}[\eta(Z) Q Y-\eta(Y) Q Z] \tag{3.22}
\end{align*}
$$

Taking inner product on both sides of (3.21) with ξ and using (2.7) and (2.15) we get

$$
\begin{align*}
& \eta\left(W_{4}(X, Y) Z\right) \\
& =g(Y, Z) \eta(X)+\frac{\lambda}{2 n} g(X, Y) \eta(Z) \tag{3.23}\\
& \quad-\left(1+\frac{\lambda}{2 n}\right) g(X, Z) \eta(Y) .
\end{align*}
$$

Now, we assume that the condition $W_{2}(\xi, X) \cdot W_{4}(Y, Z) U=0$ holds in M, then we have

$$
\begin{align*}
& W_{2}(\xi, X) W_{4}(Y, Z) U \\
& -W_{4}\left(W_{2}(\xi, X) Y, Z\right) U \tag{3.24}\\
& -W_{4}\left(Y, W_{2}(\xi, X) Z\right) U \\
& -W_{4}(Y, Z) W_{2}(\xi, X) U=0 .
\end{align*}
$$

In view of (3.10) and (3.24) we get
$g\left(W_{4}(Y, Z) U, X\right) \xi-\eta\left(W_{4}(Y, Z) U\right)_{X}$
$+\frac{1}{2 n}\left[\eta\left(W_{4}(Y, Z) U\right) Q X\right.$
$-g\left(W_{4}(Y, Z) U, X\right) Q \xi-\eta(Y) W_{4}(Q X, Z) U$
$+g(X, Y) W_{4}(Q \xi, Z) U-\eta(Z) W_{4}^{*}(Y, Q X) U$
$+g(X, Z) W_{4}^{4}(Y, Q \xi) U-\eta(U) W_{4}^{4}(Y, Z) Q X$
$+g(X, U) W_{4}^{4}(Y, Z) Q \xi 1-g\left(X, Y_{Y}\right) W_{4}(\xi, Z) U$
$+\quad+(Y) W_{4}(X, Z) U-g(X, Z) W_{4}^{4}\left(Y, \xi, S_{U}\right)$
$+\eta(Z) W_{4}(Y, X) U-g(X, U) W_{4}(Y, Z) \xi$
$+\eta(U) W_{4}^{4}(Y, Z) X=0$.

Taking inner product on both sides of (3.25) with ξ and using (2.1), (2.3) and (2.15) we obtain

$$
\begin{align*}
& \left(1+\frac{1}{2 n}\right)\left\{g\left(W_{4}(Y, Z) U, X\right)+\eta(X) \eta\left(W_{4}(Y, Z) U\right)\right\} \\
& +\frac{1}{2 n}\left\{\eta(Y) \eta\left(W_{4}(Q X, Z) U\right)-g(X, Y) \eta\left(W_{4}(Q \xi, Z) U\right)\right. \\
& +\eta(Z) \eta\left(W_{4}(Y, Q X) U\right)-g(X, Z) \eta\left(W_{4}(Y, Q \xi) U\right) \\
& \left.+\eta(U) \eta\left(W_{4}(Y, Z) Q X\right)-g(X, U) \eta\left(W_{4}(Y, Z) Q \xi\right)\right\} \\
& +g(X, Y) \eta\left(W_{4}(\xi, Z) U\right)-\eta(Y) \eta\left(W_{4}(X, Z) U\right) \\
& +g(X, Z)_{\eta}\left(W_{4}(Y, \xi) U\right)-\eta(Z) \eta\left(W_{4}(Y, X) U\right) \\
& +g(X, U)_{\eta}\left(W_{4}^{4}(Y, Z) \xi\right)-\eta(U)_{\eta}\left(W_{4}^{4}(Y, Z) X\right)=0 . \tag{3.26}
\end{align*}
$$

In view of (3.21), (3.23), (3.26) and (2.15) we get

$$
\begin{align*}
& \left(1+\frac{\lambda}{2 n}\right)[g(R(Y, Z) U, X)-g(X, Y) g(Z, U) \\
& +\frac{1}{2 n}\{g(Y, U) S(X, Z)-g(Y, Z) S(X, U) \\
& +S(X, Z) \eta(U) \eta(Y)+\lambda g(X, Z) \eta(U) \eta(Y) \\
& \left.-\lambda g(Y, Z) g(X, U)\}+\left(1+\frac{\lambda}{2 n}\right) g(X, Z) g(Y, U)\right] \\
& -\frac{\lambda}{4 n^{2}}\{S(X, U)+\lambda g(X, U)\} \eta(Y) \eta(Z) \\
& -\frac{1}{2 n}\{\lambda g(X, Y)+S(X, Y)\} \eta(U) \eta(Z)=0 . \tag{3.27}
\end{align*}
$$

Let $\left\{e_{i}: 1,2, \ldots, 2 n+1\right\}$ be an orthonormal basis of the tangent space at any point of the manifold. Putting $X=Y=e_{i}$ in (3.27) and summing over

$$
i, 1 \leq i \leq 2 n+1, \text { we get }
$$

$$
\begin{align*}
S(U, Z)= & 2 n g(U, Z) \\
& +\left\{\frac{(2 n+1) \lambda+r}{2 n+\lambda}\right\} \eta(U) \eta(Z) . \tag{3.28}
\end{align*}
$$

Again taking $U=Z=\xi$ and using (2.1), (2.3), (2.14) and (2.15) we get $\lambda=-2 n<0$. Thus λ is negative. This concludes that the Ricci soliton is shrinking. This completes the proof of the theorem.
Theorem 3.5: Let M be a $(2 n+1)$-dimensional LP-Sasakian manifold and (g, V, λ) be a Ricci soliton in M. If g satisfies the condition $W_{4}(\xi, X) \cdot W_{2}=0$, then g is shrinking under the condition $\operatorname{tr} . \varphi=0$.
Proof: Let M be a $(2 n+1)$-dimensional LPSasakian manifold and (g, V, λ) be a Ricci soliton in M. Suppose that the condition $W_{4}(\xi, X) \cdot W_{2}(Y, Z) U=0$ holds in M, then by definition we have

$$
\begin{align*}
0= & W_{4}(\xi, X) W_{2}(Y, Z) U-W_{2}\left(W_{4}(\xi, X) Y, Z\right) U \\
& -W_{2}\left(Y, W_{4}(\xi, X) Z\right) U-W_{2}(Y, Z) W_{4}(\xi, X) U . \tag{3.29}
\end{align*}
$$

By virtue of (3.22) and (3.29) we have $g\left(W_{2}(Y, Z) U, X\right) \xi-\eta\left(W_{2}(Y, Z) U\right) X$
$+\frac{1}{2 n}\left[\eta\left(W_{2}(Y, Z) U\right) Q X-\eta(X) Q W_{2}(Y, Z) U\right.$
$-\eta(Y) W_{2}(Q X, Z) U+\eta(X) W_{2}(Q Y, Z) U$
$-\eta(Z) W_{2}^{2}(Y, Q X) U+\eta(X) W_{2}^{2}(Y, Q Z) U$
$\left.-\eta(U) W_{2}^{2}(Y, Z) Q X+\eta(X) W_{2}(Y, Z) Q U\right]$
$-g(X, Y) W_{2}(\xi, Z) U+\eta(Y) W_{2}(X, Z) U$
$-g(X, Z) W_{2}(Y, \xi) U+\eta(Z) W_{2}(Y, X) U$
$-g(X, U) W_{2}(Y, Z) \xi+\eta(U) W_{2}(Y, Z) X$
$=0$.
Taking inner product on both sides of (3.30) with ξ and using (2.1), (2.3) and (2.15) we obtain

$$
\begin{align*}
& g\left(W_{2}(Y, Z) U, X\right)+\eta(X) \eta\left(W_{2}(Y, Z) U\right) \\
& +\frac{1}{2 \eta}\left[\lambda \eta(X) \eta\left(W_{2}(Y, Z) U\right)+\eta(X) g\left(Q W_{2}(Y, Z) U, \xi\right)\right. \\
& +\eta(Y) \eta\left(W_{2}(Q X, Z) U\right)-\eta(X) \eta\left(W_{2}(Q Y, Z) U\right) \\
& +\eta(Z) \eta\left(W_{2}(Y, Q X) U\right)-\eta(X) \eta\left(W_{2}(Y, Q Z) U\right) \\
& \left.+\eta(U) \eta\left(W_{2}(Y, Z) Q X\right)-\eta(X) \eta\left(W_{2}(Y, Z) Q U\right)\right] \\
& \left.+g(X, Y) \eta\left(W_{2}(\xi, Z) U\right)-\eta(Y) \eta\left(W_{2} X X, Z\right) U\right) \\
& \left.\left.+g(X, Z) \eta W_{2}(Y, \xi) U\right)-\eta(Z) \eta W_{2}(Y, X) U\right) \\
& +g(X, U) \eta\left(W_{2}(Y, Z) \xi\right)-\eta(U) \eta\left(W_{2}(Y, Z) X\right)=0 . \tag{3.31}
\end{align*}
$$

In view of (3.9) and (3.11), (3.31) yields $g(R(Y, Z) U, X)+\frac{1}{2 n}\{g(Y, U) S(X, Z)$
$-g(Z, U) S(X, Y) \xi+\left(1+\frac{\lambda}{2 n}\right) \operatorname{cg}(Y, U) g(X, Z)$
$-g(X, Y) g(Z, U)+\frac{1}{n}\left\{S(Y, U)_{\eta}(X) \eta(z)\right.$
$-S(Z, U) \eta(X) \eta(Y)+\frac{1}{2} s(X, Z) \eta(Y) \eta(U)$
$\left.\left.-\frac{1}{2} s(X, Y) \eta(U) \eta(Z)\right\}\right]=0$.
(3.32)

Let $\left\{e_{i}: i=1,2, \ldots, 2 n+1\right\}$ be an orthonormal basis of the tangent space at any point of the manifold. Putting $X=Y=e_{i} \quad$ in (3.32) and summing over $i, 1 \leq i \leq 2 n+1$, we get

$$
\begin{aligned}
& s(Z, U) \\
& =\left(\frac{8 n^{3}+4 n^{2} \lambda+2 n r}{4 n^{2}+6 n+2 \lambda}\right) g(U, Z) \\
& \quad+\left(\frac{6 n \lambda+2 n r+3 \lambda^{2}+\lambda r}{4 n^{2}+6 n+2 \lambda}\right) \eta(U) \eta(Z) .
\end{aligned}
$$

(3.33) Again,
putting $Z=U=\xi$ in (3.33) and using (2.1), (2.3) and (2.15) we get

$$
\begin{equation*}
\lambda^{2}+4 n \lambda+4 n^{2}=0 . \tag{3.34}
\end{equation*}
$$

This equation gives $\lambda=-2 n,-2 n$. Hence λ is negative. This concludes that the Ricci soliton is shrinking. Thus the theorem is proved.
From theorem 3.4 and theorem 3.5 we can state next theorem
Theorem 3.6: Ricci solitons in a $(2 n+1)$ dimensional LP-Sasakian manifold satisfying the derivation conditions $W_{2}(\xi, X), W_{4}=0$ and $W_{4}(\xi, X) \cdot W_{2}=0$ are equivalent.
Now we give an example of LP-Sasakian manifold.

4. Example for 3-dimensional LP-Sasakian Manifold

Let us consider a 3-dimensional manifold $M=\left\{(x, y, z):(x, y, z) \in R^{3}\right\}$, where (x, y, z) are standard coordinates in R^{3}. We choose the vector fields
$E_{1}=-e^{x} \frac{\partial}{\partial y}, E_{2}=e^{x}\left(\frac{\partial}{\partial z}-\frac{\partial}{\partial y}\right), E_{3}=\frac{\partial}{\partial x}$,
which are linearly independent at each point of M. Let g be the Lorentzian metric defined by
$g\left(E_{1}, E_{2}\right)=g\left(E_{2}, E_{3}\right)=g\left(E_{1}, E_{3}\right)=0$,
$g\left(E_{1}, E_{1}\right)=g\left(E_{2}, E_{2}\right)=g\left(E_{3}, E_{3}\right)=-1$.
be a 1 -form defined by $\eta(Z)=g\left(Z, E_{3}\right)$ for any vector field Z on M. Let φ be a $(1,1)$ tensor field defined by
$\varphi\left(E_{1}\right)=-E_{1}, \varphi\left(E_{2}\right)=-E_{2}, \varphi\left(E_{3}\right)=0$. linearity property of φ and g yields that

$$
\begin{align*}
& \eta\left(E_{3}\right)=-1, \varphi^{2}(U)=U+\eta(U) E_{3}, \tag{4.5}\\
& g(\varphi Z, \varphi U)=g(Z, U)+\eta(Z) \eta(U),
\end{align*}
$$

for any vector fields Z, U on M. Thus for $E_{3}=\xi,(\varphi, \xi, \eta, g)$ defines a Lorentzian
paracontact structure on M.
By the definition of Lie bracket and (4.1) we have
$\left[E_{1}, E_{3}\right]=-E_{1},\left[E_{1}, E_{2}\right]=0,\left[E_{2}, E_{3}\right]=-E_{2}$.
Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric g, the Koszul formula is defined as
$2 g\left(\nabla_{X} Y, Z\right)$
$=X g(Y, Z)+Y g(Z, X)-Z g(X, Y)$
$\quad-g(X,[Y, Z])+g(Y,[Z, X])$
$\quad+g(Z,[X, Y])$.
In view of (4.2), (4.3), (4.7) and (4.8) we get $2 g\left(\nabla_{E_{E}} E_{3}, E_{1}\right)$
$\begin{aligned}= & E_{1} g\left(E_{3}, E_{1}\right)+E_{2} g\left(E_{1}, E_{1}\right)-E_{1} g\left(E_{1}, E_{3}\right) \\ & -g\left(E_{1},\left[E_{3}, E_{1}\right]\right)-g\left(E_{3},\left[E_{1}, E_{1}\right]\right)+g\left(E_{1},\left[E_{1}, E_{3}\right]\right)\end{aligned}$
$=-2 g\left(E_{1}, E_{1}\right)$.
Similarly, we can obtain
$2 g\left(\nabla_{E_{1}} E_{3}, E_{2}\right)=0=-2 g\left(E_{1}, E_{2}\right)$
and $2 g\left(\nabla_{E_{1}} E_{3}, E_{3}\right)=0=-2 g\left(E_{1}, E_{3}\right)$.
From above we can write $2 g\left(\nabla_{E_{1}} E_{3}, X\right)=-2 g\left(E_{1}, X\right)$ for all $X \in \chi(M)$. Thus $\nabla_{E_{1}} E_{3}=-E_{1}$.
Proceeding same way we obtain

$$
\left\{\begin{array}{l}
\nabla_{E_{E_{1}}} E_{3}=-E_{1}, \nabla_{E_{1}} E_{2}=0, \tag{4.9}\\
\nabla_{E_{1}} E_{1}=-E_{3}, \nabla_{E_{1}} E_{3}=-E_{2}, \\
\nabla_{E_{2}} E_{2}=-E_{3}, \nabla_{E_{2}} E_{1}=0, \\
\nabla_{E_{3}} E_{3}=0=\nabla_{E_{3}} E_{2}=\nabla_{E_{3}} E_{1} .
\end{array}\right.
$$

Now, we have

$$
\begin{aligned}
\left(\nabla_{E_{1}} \varphi\right) E_{1} & =\nabla_{E_{1}} \varphi E_{1}-\varphi \nabla_{E_{1}} E_{1} \\
& =-\nabla_{E_{E_{1}}} E_{1}+\varphi\left(E_{3}\right) \\
& =E_{3} .
\end{aligned}
$$

Again, from definition and by the use of (2.5) we obtain
$\left(\nabla_{E_{1}} \varphi\right) E_{1}$
$=g\left(E_{1}, E_{1}\right) E_{3}+\eta\left(E_{1}\right) E_{1}+2 \eta\left(E_{1}\right) \eta\left(E_{1}\right) E_{3}$
$=E_{3}$.
Similarly, we obtain other relations. Thus we have

$$
\left\{\begin{array}{l}
\left(\nabla_{E_{4}} \varphi\right) E_{1}=E_{3},\left(\nabla_{E_{4}} \varphi\right) E_{2}=0, \tag{4.10}\\
\left(\nabla_{E_{1}} \varphi\right) E_{3}=-E_{1},\left(\nabla_{E_{2}} \varphi\right) E_{1}=0, \\
\left(\nabla_{E_{2}} \varphi\right) E_{2}=E_{3}\left(\nabla_{E_{2}} \varphi\right) E_{3}=-E_{2}, \\
\left(\nabla_{E_{3}} \varphi\right) E_{1}=0,\left(\nabla_{E_{3}} \varphi\right) E_{2}=0, \\
\left(\nabla_{E_{3}} \varphi\right) E_{3}=0 .
\end{array}\right.
$$

From (4.5), (4.6), (4.9) and (4.10), we see that the equations (2.1) - (2.5) are satisfied by the manifold M, for $E_{3}=\xi$. Hence (φ, ξ, η, g) is an LP-Sasakian structure in M. Consequently $M^{3}(\varphi, \xi, \eta, g)$ is an LP-Sasakian manifold.
Now, the Riemannian curvature tensor is defined by $R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[x, Y]} Z .(4.11)$
By virtue of (4.7), (4.9) and (4.11) we obtain

$$
\begin{aligned}
R\left(E_{1}, E_{2}\right) E_{3} & =\nabla_{E_{1}} \nabla_{E_{2}} E_{3}-\nabla_{E_{2}} \nabla_{E_{1}} E_{3}-\nabla_{\left[E_{1}, E_{2}\right]} E_{3} \\
& =-\nabla_{E_{1}} E_{2}+\nabla_{E_{2}} E_{1}=0 .
\end{aligned}
$$

Similarly, we obtain

$$
\left\{\begin{array}{l}
R\left(E_{1}, E_{2}\right) E_{3}=0, R\left(E_{2}, E_{3}\right) E_{3}=-E_{2}, \tag{4.12}\\
R\left(E_{1}, E_{3}\right) E_{3}=-E_{1}, R\left(E_{1}, E_{2}\right) E_{2}=E_{1}, \\
R\left(E_{2}, E_{3}\right) E_{2}=-E_{3}, R\left(E_{1}, E_{3}\right) E_{2}=0, \\
R\left(E_{1}, E_{2}\right) E_{1}=-E_{2}, R\left(E_{2}, E_{3}\right) E_{1}=0, \\
R\left(E_{1}, E_{3}\right) E_{1}=-E_{3}, R\left(E_{3}, E_{1}\right) E_{1}=0 \\
R\left(E_{2}, E_{2}\right) E_{2}=R\left(E_{3}, E_{3}\right) E_{3}=0 .
\end{array}\right.
$$

By the use of (4.12) we get

$$
\begin{aligned}
& S\left(E_{1}, E_{1}\right) \\
& =\sum_{i=1}^{3} g\left(R\left(E_{1}, E_{i}\right) E_{i}, E_{1}\right)
\end{aligned}=g\left(R\left(E_{1}, E_{2}\right) E_{2}, E_{1}\right) .
$$

Similarly, we obtain $S\left(E_{2}, E_{2}\right)=0$ and
$S\left(E_{3}, E_{3}\right)=-2$. Thus we have
$\left\{\begin{array}{l}S\left(E_{1}, E_{1}\right)=S\left(E_{2}, E_{2}\right)=0, \\ S\left(E_{3}, E_{3}\right)=-2 .\end{array}\right.$
From (2.13) we have
$S\left(E_{i}, E_{i}\right)=-\left\{\lambda g\left(E_{i}, E_{i}\right)+g\left(E_{i}, \varphi E_{i}\right)\right\}$.
This equation yields

$$
S\left(E_{1}, E_{1}\right)=S\left(E_{2}, E_{2}\right)=-(\lambda-1),
$$

by the use of (4.3), (4.4) and (4.13) for $i=1,2$.
This implies $\lambda=1>0$, for $i=1,2$. And

$$
S\left(E_{3}, E_{3}\right)=\lambda, \quad \text { for } i=3 .
$$

This yields $\lambda=-2<0$. Since $\lambda=1>0$ for $i=1,2$ and $\lambda=-2<0$ for $i=3$, this is an example of expanding and shrinking Ricci soliton in 3-dimensional LP-Sasakian manifold.

5. Conclusions

In this paper, we have investigated that the Ricci soliton in a $(2 n+1)$-dimensinal LPSasakian manifold is shrinking. It is also proved that Ricci solitons in an LP-Sasakian manifold satisfying the derivation conditions $R(\xi, X) \cdot W_{2}=0$,
$W_{2}(\xi, X) \cdot W_{4}=0$ and $\quad W_{4}(\xi, X) \cdot W_{2}=0 \quad$ are shrinking but are steady for the condition $W_{2}(\xi, X) \cdot S=0$.

References

[1] R. S. Hamilton, The Ricci flow on surfaces, Mathematical and general relativity (Santa Cruz. CA. (1986) 237-262.
[2] T. Chave, G. Valent, Quasi-Einstein metrics and their renoirmalizability properties, Helv Phys. Acta. 69 (1996) 344-347.
[3] D. H. Friedan, Nonlinear models in $2+\varepsilon$ dimensions, Ann. Physics. 163 (1985) 318-419.
[4] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, ArXiv: math.DG/02111159vl, 2002.
[5] H. G. Nagaraja, C.R. Premalatha, Ricci solitons in Kenmotsu manifolds, J. of Mathemati-cal Analysis. 3(2) (2012) 18-24.
[6] V.V. Reddy, R. Sharma, S. Sivaramkrishan, Space times through Hawking-Ellis constru-ction with a back ground Riemannian metric, Class Quant. Grav. 24 (2007) 3339-3345.
[7] R. Sharma, Certain results on K-contact and (k, μ)-contact manifolds, J. of Geometry. 89 (2008) 138-147.
[8] M.M. Tripathi, Ricci solitons in contact metric manifold, ArXiv: 0801. 4222 vl [math. D. G.], 2008.
[9] K. Matsumoto, On Lorentzian paracontact manifolds, Bull. of Yamagata Univ., Nat. Sci. 12 (1989) 151-156.
[10]I. Mihai, R. Rosca, On Lorentzian P-Sasakian manifolds, Classical Analysis, World Scientific Publ. 1992, 155-169.
[11]U.C. De, K. Matsumoto, A.A. Shaikh, On Lorentzian para-Sasakian manifolds, Rendicontidel Seminaro Matemetico di messina, Serie II, Supplemento al. 3 (1990) 149-158.
[12]K. Matsumoto, I. Mihai, On a certain transformation in Lorentzian para-Sasakian manifold, Tensor N. S. 47 (1988) 189-197.
[13] A.A. Shaikh, S. Biswas, On LP-Sasakian manifolds, Bull. Malaysian Math. Sci. Soc. 27 (2004) 17-26.
[14] G.P. Pokhariyal, R.S. Mishra, Curvature tensors and their relativistics significance, Yokohama Math. J. 18 (2) (1970), 105-108.
[15]G.P. Pokhariyal, Curvature tensors and their relativistics significance III, Yokohama Math. J. 21 (1973) 115-119.

