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Abstract 

In this paper, application of variational iteration method has been successfully extended to obtain 

approximate solutions of some higher order boundary value problems. We emphasize the power of the 

method by testing three different mathematical models of distinct orders. The results are obtained by 

using only little iteration.   
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1. Introduction 
 

The ordinary differential equations (ODE) with variable coefficients appear in many areas of applied 

sciences. Examples of these equations are Euler equation, Bessel equation and Legendre equation. 

Moreover, the nonlinear ordinary differential equations with variable coefficients, such as the Doffing 

equation, the Thomas-Fermi equation, and the Van der Pole equation, have been investigated in the 

literature. Linear and nonlinear ODEs with variable coefficients play a significant role in applied 

mathematics, physics, and engineering [1-5].   Researchers were aiming to establish reliable methods 

capable for solving a large class of linear or nonlinear differential and integral equations without the 

tangible restrictive assumptions or discretization of the variables. Recently, there has been great 

development of new powerful methods capable of handling linear and nonlinear equations that 

overcome most of the classical methods. The Adomian decomposition method, the variational 

iteration method, and the homotopy perturbation method are examples of the newly developed 

methods. The variational iteration method, now used by many researchers is capable for handling a 

large class of linear or nonlinear differential equations. The flexibility and adaptation provided by the 

method have made it readily applicable to cases where the solution is unknown in advance as is often 

the case in the applied sciences and engineering. The VIM provides efficient algorithm for analytic 

approximate solutions and numeric simulations for real-world applications in sciences [6–18]. Unlike 

the Adomian decomposition method, where computational algorithms are normally used to deal with 

the nonlinear terms, the VIM does not require the use of restrictive as-assumptions for the nonlinear 

terms which would complicate the analytic calculations. The VIM approaches linear and nonlinear 

problems directly in a like manner. The aim of this work is reconfirm the potential and applicability of 

the proposed method on higher order boundary value problems.  
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2. The Analysis of Variational Iteration Method 
 

Consider the general differential equation 

Lu+Nu = g(x)          (1) 

where L and N are linear and nonlinear operators respectively, and g(x) is the source inhomogeneous  

term. The variational iteration method admits the use of a correction functional for equation (1) in the 

form 

,dt))t(g)t(uN)t(Lu()t()x(u)x(u nn

x
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where   is a general Lagrange’s multiplier, which can be identified optimally via the variational 

theory, and 𝑢𝑛̅̅̅̅  as a restricted variation which means 𝛿𝑢𝑛̅̅̅̅  =0. The Lagrange multiplier   is crucial 

and critical in the method, and it can be a constant or a function. Having  determined, an iteration 

formula should be used for the determination of the successive approximations 0;)(1  nxun  of the 

solution u(x). The zeroth approximation u0 can be any selective function. However, using the initial 

values u(0); );0(u  and )0(u   are preferably used for the selective zeroth approximation 0u  as will 

be seen later. Consequently, the solution is given by 
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3. Numerical Applications 
 

Problem 3.1 Consider a fifth order non-linear BVP 
( ) ( )( ) ( ),v x iiu x e u x                                                                                             (4) 

with boundary conditions 
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The correctional functional is given as  
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where ‘λ’ is langrage multiplier, which is identified as  
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And the initial approximation is ,)(0
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For n=0,the equation (6) gives, 
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The approximate solution is 
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Fig 1: Comparison of exact and approximate solution.

 

 

Problem 3.2 Consider a non-linear BVP 
( ) 2( ) ( ),vi xu x e u x                                                                                                 (8) 

1 1 1(0) 1, (0) 1, (0) 1, (1) , (1) , (1) .u u u u e u e u e                                    (9) 
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And the initial approximation is 
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Fig.2: Comparison of closed and approximate solution. 

 

Problem 3.3 Consider a six order non-linear BVP 
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The correctional functional is given as  
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where ‘λ’ is langrage multiplier, which is identified as 
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Fig.3: Comparison of exact and approximate solution. 

 

4. Conclusion 

In this work, the variational iteration method has been successfully employed on higher order 

boundary value problems by converting into corresponding system of first order differential 

equations. The obtained results are good agreement with the existing results in literature. 
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