Theoretical investigation of mixing properties of Sb-Sn binary liquid alloy at 905K
DOI:
https://doi.org/10.3126/bibechana.v15i0.18306Keywords:
Thermodynamic properties, Structural properties, Surface properties, Transport properties.Abstract
The thermodynamic, microscopic, surface and transport properties of Sb-Sn liquid alloy at 905K have been studied using regular solution model. In thermodynamic properties, free energy of mixing(GM) , activity(a), entropy of mixing(SM), heat of mixing (HM) have been studied. To understand structural behavior of the liquid alloys concentration fluctuations in the long wavelength limit i.e. (Scc(0)) and short range order parameter (α1) have been computed. Surface property is studied with the help of Butler’s model while transport property is computed from Moelwyn-Hughes equation. The theoretical and experimental values of thermodynamic and microscopic properties of Sb-Sn liquid alloy at 905K have been compared. In present work the value of interchange energy (w) is found to be negative suggesting that there is a tendency of unlike atoms pairing (i.e. Sb-Sn) as the nearest neighbor indicating the ordering behavior in Sb-Sn liquid alloy. The symmetric behavior of concentration fluctuations of the liquid alloy has been well explained by the model. The temperature dependence of interchange energy (w) has been found during the computation of entropy of mixing (SM) and heat of mixing (HM) of the liquid alloy.
BIBECHANA 15 (2018) 1-10
Downloads
Downloads
Published
How to Cite
Issue
Section
License
This license enables reusers to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and only so long as attribution is given to the creator.