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Abstract

Let  Pn denote the set  of all polynomials of  the form  





1

1

)(
n

j
jzzzzp with

.11,1  njz j In this  paper  we shall          obtain    some   zero-free  regions  for  the

derivative  of  a  polynomial.
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1. Introduction

Let us  suppose that  p(z)  is  an  nth degree  polynomial   which  has  all  its  zeros  in  the  unit  disk

1z , then all  the critical  points  of  p(z)  also  lie in  the  same  disk 1z .This  is  in fact  the well-

known  Theorem   which  was implied  in  a  note of  Gauss  dated 1836 and proved  explicitly  by

Lucas dated 1874 (see also Marden [1].

Now  instead of  considering  the  relative  position  of  all  the  zeros  and  critical  points  of p(z), let  us

choose  any  one  zero zo of  p(z)  and  ask: At  most  how  far  from  zo does  the  nearest  critical  point

lie ? A  possible  answer  to  this  question  is  given  by  the  following :Conjecture: “ If  p(z)  is  an  nth

degree  polynomial having  all  its  zeros  in  the  unit  disk 1z and  if  zo is  any  one  such  zero,

then  at least  one  critical point  of  p(z)  lie  in  the  disk .10  zz ” This  conjecture was  included  in

the  collection  of  Research  Problems  in  Function  Theory published  in   1967  by  professor Hayman

[2], (see  also [3]). Since it had  been  brought to  Hayman’s  attention  by  professor Ilyeff. It became
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known  as  “Ilyeff’s Conjecture”. Actually conjecture was due  to  a  Bulgarian  mathematician  B.

Sendov. In  connection  with  this  conjecture Brown [4]  posed the  following  problem.

Let nQ denote  the   set  of  all  complex  polynomials of  the form  



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1

)(
n

j
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.11,1  njz j Find  the  best constant Cn such  that )(zp does  not  vanish  in nCz  for

all nQp .

Brown observed that if 1)1()(  nzzzp then 0
1
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Recently Aziz and  Zargar [5]  settled this conjecture.

Theorem1.1. Let  
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kzzzzp be  a  polynomial  of  degree  n  with ,11,1  nkzk

then )(zp does  not  vanish  in  the  disk .
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The result is best possible for the polynomial  20,)()( 1  niezzzp .

First  we  shall  prove  the  following  interesting  result  which  provides  the  zero  free regions  for  the
second  derivative  of  polynomial
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Taking  m = 2  we get
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It  is  clearly  of  interest  to  known  that  a  zero  free  region  for  the polynomial )(zpm where
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In this direction, we  prove  the  following interesting results:
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Theorem1.3. Let
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not  vanish  in  the  disk

.
)1)....(1(

!




mnnn

m
z

Remark 1. If  m=1,then  we  get  Theorem 1.1.
For  the  proofs of  these  theorems  we  need  the  following  result  which  is  due  to  Aziz  and  Zagar

[5].

Lemma: Let  
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2. Proofs of Theorems

Proof  of  Theorem 1.2. We  write,
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Using  the above  lemma  again  and  noting  that  S(z)  is  a  polynomial   of  degree  n-1, it  follows  that
)(zS  does  not  vanish in
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Or  equivalently,
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Replacing   z   by ,z
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m
it  follows  that
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This  completes  the proof  of  Theorem 1.2.

Proof  of  Theorem 1.3. By hypothesis,
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the  above  lemma  again  and  noting  that  U(z)    is  a  polynomial  of  degree   n-2, thus  it  implies  that
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In  a  similar  way  we  see  that  the  polynomial
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Proceeding  in  this  way  and  noting  that   m  and  n  are  positive  integers   it  follows that  the
polynomial   does  not  vanish  in
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Which  proves  Theorem 1.3.
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