BIBECHANA

A Multidisciplinary Journal of Science, Technology and Mathematics ISSN 2091-0762 (Print), 2382-5340 (Online)

Journal homepage: http://nepjol.info/index.php/BIBECHANA

Publisher: Research Council of Science and Technology, Biratnagar, Nepal

On zero-free regions for the derivative of a polynomial

B.A. Zargar* and A. W. Manzoor

Department of Mathematics, University of Kashmir Hazratbal Srinagar 190006, India

*Email: bazargar@gmail.com

Article history: Received 27 June, 2016; Accepted 17 August, 2016

DOI: http://dx.doi.org/10.3126/bibechana.v14i0.15521

This work is licensed under the Creative Commons CC BY-NC License.

https://creativecommons.org/licenses/by-nc/4.0/

Abstract

Let P_n denote the set of all polynomials of the form $p(z) = z \prod_{j=1}^{n-1} (z - z_j)$ with $|z_j| \ge 1$, $1 \le j \le n-1$. In this paper we shall obtain some zero-free regions for the derivative of a polynomial.

Keywords: Zero-free regions; Critical points; Sendov's Conjecture.

1. Introduction

Let us suppose that p(z) is an n^{th} degree polynomial which has all its zeros in the unit disk $|z| \le 1$, then all the critical points of p(z) also lie in the same disk $|z| \le 1$. This is in fact the well-known Theorem which was implied in a note of Gauss dated 1836 and proved explicitly by Lucas dated 1874 (see also Marden [1].

Now instead of considering the relative position of all the zeros and critical points of p(z), let us choose any one zero z_0 of p(z) and ask: At most how far from z_0 does the nearest critical point lie? A possible answer to this question is given by the following: **Conjecture**: "If p(z) is an nth degree polynomial having all its zeros in the unit disk $|z| \le 1$ and if z_0 is any one such zero, then at least one critical point of p(z) lie in the disk $|z-z_0| \le 1$." This conjecture was included in the collection of Research Problems in Function Theory published in 1967 by professor Hayman [2], (see also [3]). Since it had been brought to Hayman's attention by professor llyeff. It became

known as "Ilyeff's Conjecture". Actually conjecture was due to a Bulgarian mathematician B. Sendov. In connection with this conjecture Brown [4] posed the following problem.

Let Q_n denote the set of all complex polynomials of the form $p(z) = z \prod_{j=1}^{n-1} (z - z_j)$ with $|z_j| \ge 1$, $1 \le j \le n-1$. Find the best constant C_n such that p'(z) does not vanish in $|z| \le C_n$ for all $p \in Q_n$.

Brown observed that if $p(z) = z(z-1)^{n-1}$ then $p'\left(\frac{1}{n}\right) = 0$ and conjectured that $C_n = \frac{1}{n}$.

Recently Aziz and Zargar [5] settled this conjecture.

Theorem1.1. Let $p(z) = z \prod_{k=1}^{n-1} (z - z_k)$ be a polynomial of degree n with $|z_k| \ge 1$, $1 \le k \le n-1$,

then p'(z) does not vanish in the disk $|z| < \frac{1}{n}$.

The result is best possible for the polynomial $p(z)=z(z-e^{i\Gamma})^{n-1}, 0 \le \Gamma < 2f$.

First we shall prove the following interesting result which provides the zero free regions for the second derivative of polynomial

$$p(z) = z^m \prod_{k=1}^{n-m} \left(z - z_j \right)$$

Theorem 1.2. If $p(z) = z^m \prod_{j=1}^{n-m} (z - z_j)$ where $|z_j| \ge 1$, $j = 1, 2, \dots, n-m$, then the polynomial

p''(z) does not vanish in

$$0<\left|z\right|<\frac{m(m-1)}{n(n-1)}.$$

Taking m = 2 we get

Corollary 1.If $p(z) = z^2 \prod_{j=1}^{n-2} (z - z_j)$ where $|z_j| \ge 1$, $j = 1, 2, \dots, n-2$, then the polynomial

p''(z) does not vanish in

$$0<\left|z\right|<\frac{2}{n(n-1)}.$$

It is clearly of interest to known that a zero free region for the polynomial $p^m(z)$ where

$$p(z) = z^m \prod_{j=1}^{n-m} (z - z_j)$$

In this direction, we prove the following interesting results:

Theorem1.3. Let

$$p(z) = z^m \prod_{j=1}^{n-m} (z - z_j)$$

be a polynomial of degree n, with $|z_j| \ge 1$, $j = 1, 2, \dots, n-m$, then the polynomial $p^m(z)$ does not vanish in the disk

$$\left|z\right| < \frac{m!}{n(n-1)....(n-m+1)}.$$

Remark 1. If m=1,then we get Theorem 1.1.

For the proofs of these theorems we need the following result which is due to Aziz and Zagar [5].

Lemma: Let
$$p(z) = z^m \prod_{j=1}^{n-m} (z - z_j)$$
 where $|z_j| \ge 1$, $1 \le j \le n - m$, then $p'(z)$ does

not vanish in $0 < |z| < \frac{m}{n}$.

2. Proofs of Theorems

Proof of Theorem 1.2. We write,

$$p(z) = z^m Q(z)$$

where

$$Q(z) = \prod_{j=1}^{n-m} (z - z_j), |z_j| \ge 1, j = 1, 2, \dots, n-m.$$

By above lemma, the polynomial

$$p'(z) = z^{m}Q'(z) + mz^{m-1}Q(z)$$

$$=z^{m-1}R(z)\,,$$

where

$$R(z) = zQ'(z) + mQ(z),$$

does not vanish in $0 < |z| < \frac{m}{n}$.

Replacing zby $\frac{m}{n}z$, it follows that the polynomial,

$$S(z) = p'\left(\frac{m}{n}z\right)$$
$$= \left(\frac{m}{n}\right)^{m-1} z^{m-1} R\left(\frac{m}{n}z\right)$$

does not vanish in 0 < |z| < 1, so that all the zeros of $R\left(\frac{m}{n}z\right)$ lie in $|z| \ge 1$.

Using the above lemma again and noting that S(z) is a polynomial of degree n-1, it follows that S'(z) does not vanish in

$$0<\left|z\right|<\frac{m-1}{n-1}.$$

Or equivalently,

$$p''\left(\frac{m}{n}z\right)$$

does not vanish in

$$0 < \left| z \right| < \frac{m-1}{n-1}$$

Replacing z by $\frac{m}{n}z$, it follows that

$$p''(z) = z^{m-1}R'(z) + (m-1)z^{m-2}R(z)$$

= $z^{m-2}(zR'(z) + (m-1)R(z))$
= $z^{m-2}T(z)$

where

$$T(z) = zR'(z) + (m-1)zR(z)$$

does not vanish in

$$0<\left|z\right|<\frac{m-1}{n-1}.$$

This completes the proof of Theorem 1.2.

Proof of Theorem 1.3. By hypothesis,

$$p(z) = z^m O(z)$$

where

$$Q(z) = \prod_{j=1}^{n-m} (z - z_j) |z_j| \ge 1, j = 1, 2, \dots, n - m.$$

By the above lemma, the polynomial p'(z) does not vanish in

$$0<\left|z\right|<\frac{m}{n}$$
.

Therefore Theorem 1.2 yeilds that

$$p''(z) = z^{n-2}T(z),$$

where

$$T(z) = zR'(z) + (m-1)zR(z)$$

does not vanish in

$$0<\left|z\right|<\frac{m(m-1)}{n(n-1)}.$$

Replacing z by $\frac{m(m-1)}{n(n-1)}$ it follows that

$$U(z) = p''\left(\frac{m(m-1)}{n(n-1)}z\right)$$
$$= \left(\frac{m(m-1)}{n(n-1)}z\right)^{n-2} T\left(\frac{m(m-1)}{n(n-1)}z\right)$$

does not vanish in 0 < |z| < 1, so that all the zeros of $T\left(\frac{m(m-1)}{n(n-1)}z\right)$ lie in $|z| \ge 1$. Applying the above lemma again and noting that U(z) is a polynomial of degree n-2, thus it implies that U'(z) does not vanish in $0 < |z| < \frac{m-2}{n-2}$.

Or equivalently,

$$p'''\left(\frac{m(m-1)}{n(n-1)}z\right)$$

does not vanish in

$$0<\left|z\right|<\frac{m-2}{n-2}.$$

Replacing z by $\frac{n(n-1)}{m(m-1)}z$ it follows that,

$$p'''(z) = z^{n-2}T'(z) + (n-2)z^{n-3}T(z)$$

$$= z^{n-3}(zT'(z) + (n-2)T(z))$$

$$= z^{n-3}V(z),$$

where

$$V(z) = zT'(z) + (n-2)T(z)$$

does not vanish in $0 < |z| < \frac{m(m-1)(m-2)}{n(n-1)(n-2)}$

In a similar way we see that the polynomial

$$p^{iv}(z) = z^{n-3}V'(z) + (n-3) + (n-3)z^{n-4}V(z)$$
$$= z^{n-4}W(z)$$

where,

$$W(z) = zV'(z) + (n-3)V(z)$$

does not vanish in

$$0 < |z| < \frac{m(m-1)(m-2)(m-3)}{n(n-1)(n-2)(n-3)}.$$

Proceeding in this way and noting that m and n are positive integers it follows that the polynomial does not vanish in

$$|z| < \frac{m(m-1).....2.1}{n(n-1)...(n-m+1)} = \frac{m!}{n(n-1)....(n-m+1)}$$

Which proves Theorem 1.3.

References

- [1] M. Marden, Geometry of polynomials, Math. Survey's No.3, American Math.Soc. (1966).
- [2] W. K. Hayman, Research Problems in Function Theory, London (1967) pp. 1-25.
- [3] Q. I. Rahman and G. Schmesser's Analytic Theory of polynomials, Oxford University Press,New York (2002).
- [4] J. E. Brown, On theIlief-Sendov Conjecture, Pacific J.Math.135 (1988) 223-232. http://dx.doi.org/10.2140/pjm.1988.135.223
- [5] A. Aziz and B.A. Zargar, On the critical points of a polynomial, Bull. Austral. Math. Soc.57 (1998) 173-174.

http://dx.doi.org/10.1017/S000497270003152X