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Abstract 

In this paper, we applied relatively new fractional complex transform (FCT) to convert the given 

fractional partial differential equations (FPDEs) into corresponding partial differential equations 

(PDEs) and Variational Iteration Method (VIM) is to find approximate solution of time- fractional 

Fornberg-Whitham and time-fractional Wu-Zhang equations. The results so obtained are re-stated by 

making use of inverse transformation which yields it in terms of original variables. It is observed that 

the proposed algorithm is highly efficient and appropriate for fractional PDEs arising in mathematical 

physics and hence can be extended to other problems of diversified nonlinear nature. Numerical 

results coupled with graphical representations explicitly reveal the complete reliability and efficiency 

of the proposed algorithm.  
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1. Introduction 

The nonlinear partial differential equations (NPDEs) are encountered in various disciplines, such as 

physics, mechanics, chemistry, biology, mathematics and engineering. Nonlinear partial differential 

equations [1-29] are of extreme importance. Recently, scientists have observed that number of real 

time problems is modeled by fractional nonlinear differential equations [4-5,7,10,19,21-25] which are 

very hard to tackle. Transform is an important method to solve mathematical problems. Recently the 

fractional complex transform [20-23] was suggested to convert fractional order differential equations 

with modified Riemann-Liouville derivatives [24-25] into integer order differential equations, and the 

resultant equations can be solved by different methods. 

This paper is devoted to the study of time-fractional Fornberg-Whitham equation, modified time 

fractional Fornberg-Whitham equation [6-12], time-fractional Wu-Zhang equation [24, 25]. The 

Fornberg–Whitham equation was first proposed for studying the qualitative behavior of wave 

breaking. The time fractional Fornberg–Whitham equation can be written as  

 ���� − ���� + �� = ����� − ��� + 3�����  , � > 0 , 0 < � ≤ 1,            (1) 

Subject to the initial conditions 
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 ���, 0� = ����,   
and modifying the nonlinear term ��� in Eq. (1) by ����, He et al. proposed in [12] the modified 

time fractional Fornberg-Whitham equation 

 ���� − ���� + �� = ����� − ���� + 3����� , � > 0 , 0 < � ≤ 1,                      (2) 

and time-fractional Wu-Zhang equation  

             ���� + ��� + ��� + �� = 0  ,  
             ����+��� + ��� + �� = 0,  0 < � ≤ 1         (3)        

             ���� + ����� + ����� + �� ����� + ���� + ���� + ����� = 0 

with initial conditions 

 ���, �, 0� = ����, ��,  
 ���, �, 0� = ����, ��,  
 ���, �, 0� = ����, ��.  
where w is the elevation of the water, u is the surface velocity of water along x -direction, and v is the 

surface velocity of water along y-direction. Wu and Zhang derived three sets of model equations for 

modeling nonlinear and dispersive long gravity waves travelling in two horizontal directions on 

shallow waters of uniform depth. Eq. (3) is one of these equations, Wu-Zhang equation (which 

describes (2+1)-dimensional dispersive long wave). The fractional derivatives are considered in the 

Jumarie sense. The basic motivation of this paper is the extension of a very reliable and efficient 

technique namely Variational Iteration Method using Complex Transform (VIMCT) to find 

approximate solutions of time-fractional Fornberg-Whitham and system of time-fractional Wu-Zhang 

equations. The convergence of the proposed variational iteration method using fractional derivative is 

addressed in [28-29]. It is observed that the proposed algorithms is fully synchronized with the 

complexity of fractional differential equations, Numerical results coupled with graphical 

representations explicitly reveal the complete reliability and efficiency of the proposed algorithm. 

 

2. Definitions  

Definition 2.1 Jumarie’s fractional derivative [24-25] is a modified Riemann-Liouville derivative 

defied as 

              ������� =
&'(
') �

Γ�*α� + �x − t�*α*��f�t� − f�0��dt,              α < 0 /0 ,
�

Γ��*α� 11/  + �x − t�*α�f�t� − f�0��dt,    0 <  α < 1,/0�f α*2�x��2                                  n ≤ α < 4 + 1, 4 ≥ 1.
6                                        (4) 

 where �: 8 → 8, � → ���� denotes a continous (but not necessarily differentiable) function. Some 

useful formulas and results of Jumarie’s Modified Riemann-Liouville Derivatives are as follows: 

 ���: = 0 , � > 0, : = :;4<�=4�.                (5)    

             ���>: ����? = : �������, � > 0, : = :;<4�=4�.                          (6) 
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          ��� �@ = Γ��A���BCD
Γ��A@*�� , E > � > 0.               (7) 

             ���>����F���? = >�������? F��� + ���� >���F���?.              (8) 

             ���� ������ = ��̀���. �����.                                         (9) 
 

3. Variational Iteration Method (VIM) using Complex Transform  

The nonlinear differential equations [13-16] can be expressed in the operator form as 

 �������, ��� + 8����, ��� + H����, ��� = 0.                                      (10) 

where ��� is the time-fractional Jumarie’s fractional derivative , H���is the nonlinear operator and 8��� is some linear operator. 

The complex transform requires  

 I = �� 

Using the basic properties of the fractional derivative [20], we can convert the fractional derivative 

into classical derivative. 

 
JDKJ�D = JKJL JLD

J�D = σ
JKJL,                         (11) 

where σ, is defined [20], Eq. (10) becomes  

 σ �M�u��, ��� + 8�u��, ��� + H�u��, ��� = 0,            (12) 

where  �M = JKJM  

 NM����, ���� + 8����, ���� + H����, ����=0,                       (13) 

where NM is the linear differential operator. 

According to Variational Iteration Method, we construct a correction functional as follows: 

             �OA���, �� = �O��, �� + + P��, Q�>NR�O�x, Q��0 + 8�SO�x, Q� + H�SO��, ��?TQ,         (14) 

where P is the general Lagrangian multiplier which can be indentified optimally by the variational 

theory ,the subscript 4 denotes the nth order approximation, and �SO is considered as a restricted 

variation, i.e. U�SO = 0. 
Its stationary conditions can be obtained as follows: 

            P/�x, Q� = 0,   
            1 + P�x, Q� = 0.  
The Lagrange multiplier, therefore, can be obtained as P = −1, and the following variational iteration 

formula can be obtained as  

             �OA���, �� = �O��, �� − + NR�O��, Q��0 + 8��O� + H��O�TQ.             (15) 

Considering �0��, 0� = ���, 0�, we can easily find the components of the iterative formula defined in  

(15). 

Applying backward substitution to the computed components I = �� , we get  
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 ���, �� = limO→∞ �O��, ��.                          (16) 
 

4. Numerical Applications 

Example 4.1 Consider the following time- fractional Fornberg-Whitham equation defined in Eq. (1) 

 ���� − ���� + �� = ����� − ��� + 3�����  ,   � > 0 , 0 < � ≤ 1,     (17) 

Subject to the initial conditions 

 ���, 0� = Z[\.   

Applying procedure defined in (11-15), 

 u0 = e\̂,  

 u��x, S� = − ��σ
e\̂�−2 + S�,  

 u��x, S� = �aσ
e\̂�8 − 5S + S��,  

 u��x, S� = − �deσ
e\̂�−96 + 63S − 18S� + 2S��, 

                 ⋮.  
applying backward substitution   

 u��x, t� = − ��σ
e\̂�−2 + tα�,  

 u��x, t� = �aσ
e\̂�8 − 5tα + t�α�,  

 U��x, t� = − �deσ
e\̂�−96 + 63tα − 18t�α + 2t�α�,                                (18) 

                 ⋮. 
and so on. The exact solution of the time- fractional Fornberg-Whitham equation is obtained [6]. 

 u�x, t� = e�\̂*\jk �.               (19) 

Graphical representation of exact solution (19) and the approximate solutions (18) for ∝= 0.3,0.6,1.  

     

  (a)  α = 0.3      (b)  α = 0.6  
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  (c)  α = 1      (d) Exact Solution 

Example 4.2 Consider the following time-fractional modified Fornberg-Whitham equation defined in 

Eq. (2) 

 ���� − ���� + �� = ����� − ���� + 3����� , � > 0 , 0 < � ≤ 1,                (20) 

Subject to the initial conditions 

 ���, 0� = = sech��:��,          

where = = �q �√15 − 5�, : = ��0 �s10�5 − √15��. 
Applying procedure defined in (11-15) 

 �0 = = sech��:��,  
u��x, S� =  aσ coshw�cx� >coshx�cx�2c sinh�cx� coshq�cx�S

+ 2a�c sinh�cx� S32c�a sinh�cx� cosh��cx� + 60ac� sinh�cx� S, 
                      ⋮, 
and so on. Applying backward substitution  

              u0 = a sech
2�cx�,  

u1�x, t� =
a

σcosh
7�cx� >cosh

5�cx� 2c sinh�cx� cosh
4�cx�tα + 2a2c sinh�cx� tα − 32c3a sinh�cx� cosh

2�cx� +
60ac3 sinh�cx� tα,                        (21) 

                     ⋮, 
and so on.                                                                                                                      

The exact solution of the time- fractional modified Fornberg-Whitham equation is obtained [6]. 

 u�x, t� = asech
2�c yx − �5 − z15�t�{ .            (22)  

Graphical representation of exact solution (22) and the approximate solutions (21) for ∝= 0.3,0.6,1.  
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(a)  � = 0.3       (b)  � = 0.6 

                  

(c)  � = 1       (d) Exact Solution 

Example 4.3 Consider time- fractional Wu-Zhang equation, 

             Dt
αu + uux + vuy + wx = 0,  

             Dt
αv+uvx + vvy + wy = 0,      (23)   

             Dt
αw + �uw�x + �vw�y + 1

3
�uxxx + uxyy + vxxy + vyyy� = 0,  

with initial conditions 

 u�x, y, 0� = − k3Ak2b0

k1
+ 2√3

3
k1 tanh�k1x + k2y�,  

 v�x, y, 0� = b0 + 2√3

3
k2 tanh�k1x + k2y�,       

 w�x, y, 0� = 2

3
�k1

2 + k2
2� sech

2�k1x + k2y�, 
where |0, }�, }� and }� are arbitrary constants. Applying the procedure defined above (10-15), we get 

     u0�x, y, S� = − ~kA~\��~� + �√�� k� tanh�k�x + k�y�, 
             v0�x, y, S� = b0 + �√�� k� tanh�k�x + k�y�, 

              u0�x, y, S� = �� �k�� + k��� sech��k�x + k�y�, 
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u1�x, y, S� = 1

3 σcosh
2�k1xAk2y� �−3k3 cosh

2�k1x + k2y�2 − 3k2 c cosh
2�k1x + k2y�2 + 2√3k1

2
sinh�k1x +

k2y� cosh�k1x + k2y� + 2√3k1
2
Sk3�,  

v1�x, y, S� = 1

3σ cosh
2�k1xAk2y� �3c cosh

2�k1x + k2y�2 + 2√3 k2sinh�k1x + k2y� cosh�k1x + k2y� +
2√3k2Sk3�,  
w1�x, y, S� = − 2

3σ cosh
3�k1xAk2y� �2 sinh�k1x + k2y� Sk3k1

2 + 2 sinh�k1x + k2y� Sk3k2
2 − k1

2
cosh�k1x +

k2y��, 

                    ⋮, 
and so on. 

Applying backward transformation 

u1�x, y, t� = 1

3σ cosh
2�k1xAk2y� �−3k3 cosh

2�k1x + k2y�2 − 3k2 c cosh
2�k1x + k2y�2 + 2√3k1

2
sinh�k1x +

k2y� cosh�k1x + k2y� + 2√3k1
2
tαk3�,              (24) 

v1�x, y, t� = 1

3σ cosh
2�k1xAk2y� �3c cosh

2�k1x + k2y�2 + 2√3 k2sinh�k1x + k2y� cosh�k1x + k2y� +
2√3k2tαk3�,                (25) 

w��x, y, t� = − ��� ����k�~�/A~\�� �2 sinh�k�x + k�y� t�k�k�� + 2 sinh�k�x + k�y� t�k�k�� −
k�� cosh�k�x + k�y��,                                                                                                                          (26)       

                     ⋮, 
and so on. Finally, we have 

 u�x, y, t� = limn→∞ un�x, y, t�,    
 v�x, y, t� = limn→∞ vn�x, y, t�,  

 w�x, y, t� = limn→∞ wn�x, y, t�.         

The exact solution of time-fractional Wu-Zhang Equations [26], is given by    

 u�x, y, t� = − k3Ak2b0

k1
+ 2√3

3
k1 tanh�k1x + k2y + k3t�.          (27) 

 v�x, y, t� = b0 + 2√3

3
k2 tanh�k1x + k2y + k3t�.            (28) 

 w�x, y, t� = 2

3
�k1

2 + k2
2� sech

2�k1x + k2y + k3t�.            (29) 

Graphical representation of exact solution (27) and the approximate solution (24) for ∝= 0.3,0.6,1. 
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                  (a)  α = 0.3       (b)  α = 0.6 

                                         

               (c)  α = 1       (d)  Exact Solution 

Graphical representation of the exact solution (28) and the approximate solution (25) for ∝= 0.3,0.6,1.  

                               

        (a)  α = 0.3       (b)  α = 0.6 

                             

      (c)  α = 1          (d) Exact Solution 
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Graphical representation of exact solution (29) and the approximate solution (26) for ∝= 0.3,0.6,1.  

                                

(a)  α = 0.3       (b)  α = 0.6 

                    

(c)  α = 1       (d) Exact Solution 

5. Conclusions 

Applied fractional complex transform (FCT) proved very effective to convert the given partial 

differential equations (PDEs) into corresponding partial differential equations (PDEs) and the same is 

true for its subsequent effect in Variational Iteration Method (VIM) which was implemented on the 

transformed PDEs. Computational work fully re-confirms the reliability and efficacy of the proposed 

algorithm and hence it may be concluded that presented scheme may be applied to a wide range of 

complex physical problems.  
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