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Abstract 

Fourier analysis is an important tool used as it is or it’s different variants in many fields of sciences 

and engineering. It’s importance is due to it’s simplicity with which it expands a given function in 

terms of circular or complex exponents. Further it is quite versatile to handle many functions of 

practical interest, specifically, the functions with several mathematical disabilities that are hard to be 

handled with tools like Taylor series. Discrete Fourier Transform (DFT) is a form of Fourier analysis 

where the discrete function and it’s transform are both of finite length. This processing requires lot 

many computations. Here in this work a simplified and non programmable calculator based scheme is 

presented with which one can easily determine the DFT of the given function by feeding in the DFT 

equation once and a few presses of the calculator keys.    

DOI: http://dx.doi.org/10.3126/bibechana.v12i0.11681    © 2014 RCOST:  All rights reserved.         
 

Keywords:  Fourier analysis; DFT computation; scientific calculator. 
 

 

1. Introduction 

Engineering is so heavily endowed with the mathematics that it may be hard to find out a single topic 

of mathematics that is never used in any application; engineering and mathematics run side by side 

and are naturally inseparable from one another. More sophisticated engineering applications usually 

involve advanced mathematics. Engineering point of view is to achieve the solution with a certain 

tolerances. This is a necessary design parameter that involves a compromise between the efforts 

required to obtain the final solution and the total time spent in achieving it. Bode’s plotting is a 

popular example, where error at a corner frequency is substantially high (3dB maximum), accuracy of 

the function is sacrificed at the corner, but it pays off by enhancing the speed in estimating the 

characteristics of a system containing several distinguished poles and zeros, of different types, in just 

a few steps [1]. Optimization of speed and efforts seem to occupy the central place in design and 

analysis. However, the accuracy is all important and may not be sacrificed every time. 

Non programmable scientific calculators are a handy tool the engineering students usually are 

equipped with. But it is observed that unskil lful use of the calculator leads to   the  adoption of   
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cumbersome computational procedures, which unfortunately leads to the failure in 

maintaining interest in computation [2]. Here in  this  work,  the  discrete  Fourier  Transform  

 (DFT) computation is presented, which normally demands a good some of mathematical calculations, 

usually involving complex numbers. Computation with complex numbers is as easy a task as the 

computation with real numbers [3], and hence the DFT of a function can also be easily computed.  

 

 

2. Fourier Analysis 
 

Fourier analysis expands a periodic function in terms of the sum of simple circular functions. It finds 

applications in engineering systems analysis, mathematical analysis, mechanics, audio and video 

signal processing. It is considered more versatile than Taylor series, as it can expand many 

discontinuous functions of practical interest [4]. Different versions of Fourier analysis practically 

exist, for periodic and non periodic functions, which may be continuous or discrete. Fourier series is 

used for periodic functions whereas Fourier transforms are used for aperiodic functions. 

It is of particular importance that when a discrete function of finite sample length is analyzed, the 

corresponding Fourier transform is also discrete. Such a function has both the Fourier series and 

Fourier transforms similar [5].  

Let {x[n]}be an aperiodic finite energy sequence of sample length N, x[n] being a discrete function, 

‘n’ being integer and is uniformly spaced in time. Actually the independent variable n being ‘nT’, T is 

the time period of sampling function, though T is dropped for the sake of simplicity. A periodic 

representation of the function x[n] is defined by  

 

∑ −=
∞

−∞=l
p lNnxnx )()(          (1) 

 

Fourier series representation of (1) over N samples can be given by the following synthesis – analysis 

pair. 
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Similarly the Fourier transform pair for the finite sequence {x(n)} can be given by. 
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Comparing the pairs of Equations (2) – (3) and (4) – (5), it is evident that the Fourier transform of the 

aperiodic sequence {x(n)} of length N, and its periodically expressed sequence {xp(n)}can be defined 

by one another, as below: 
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kNckX =)(         (6) 

 

This type of analysis requires a set of cumbersome computations as it involves complex numbers. The 

equations (2 – 5) are in fact N equations each one containing N terms with a weight 
nk

N
j

e

π2
±

 But in 

practical computations, a little manipulation can lead to simpler computations for the above analysis, 

which can be run on a simple non-programmable calculator. Here it is demonstrated through an 

example, how this can be accomplished with affordable simple equation(s). 6 point analysis of an 

arbitrary sequence x(n) = {2, 1, -3, 4} can be performed by using Equation (4). 
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The exponent of (7), could be expressed in calculator syntax. 
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Using equations (9) and (11), equation (8) can be rewritten as  

 

  
 

 

 

 

 

 

 
 

 

 

 

 

 

Fig. 1: Points of DFT computation uniformly placed on the unit circle, alongwith the points 

of data of the function x(n) mapped to the circle. 
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Equation (12) can be implemented directly on a calculator, k replaced by a memory, say A, and with 

modes be set CMPLX and DEG. Once the equation (12) is fed, the press of the key CALC asks for the 

value of “A” and offers the corresponding DFT component at a consecutive press of the = key. The 

result is presented below. 

 

{ }732.1,464.37,6,464.37,732.1,4)( jjjjkX −+−−=    (13) 

 

The process to approach equation (12) is still simple and can also be written by considering the fact 

that the computation points are uniformly distributed over the circle of unit radius by a phase N
π2  

radians in the π2 phase space. With the help of Figure 1, DFT equation can be written directly. 
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Similarly, the inverse DFT (IDFT) computation is also as simple, and can again be directly written 

with the help of Figure 2, keeping in mind that the weights in the IDFT Equation as follows. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: IDFT computation scheme. IDFT computation points uniformly placed on the unit 

circle, alongwith the DFT mapped on the circle. 
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Perhaps, the equations (14) and (15) are in their simplest possible form. Other forms are also possible 

involving conjugate weights, as the weights corresponding to 
�60∠  is conjugate to 

�300∠  and vice 

versa, and may be incorporated if needed. Generalized equations based on the representations of 

equations (14) and (15) can thus be given as follows. 
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3. DFT Computation – Schemes and Results  
  

The procedure of DFT computation on CASIO calculators like fx 991ES PLUS Natural V.P.A./M., 

can be summarized as follows. Use of equation (12) or (14) can facilitates to write an equation in 

calculator syntax for the discrete sequence x(n)={2, 1, -3, 4}. The computation is done in a bit 

interactive manner as presented in Table 1 below. In Bold and Italic, are the calculator key presses 

required right from the basic equation and the components of the results are in normal text.  

 

AAA ��� 180412036012 −∠+−∠−−∠+      (18) 

 

 

Table 1:Implementation of Equation (18) 

 

CALC  A=? 

0 
=  4 SHIFT  ReIm j0   

CALC  A=? 

1 

=  0 SHIFT  ReIm j1.732   

CALC  A=? 

2 

=  7 SHIFT  ReIm -j3.464   

CALC  A=? 

3 
=  -6 SHIFT  ReIm j0   

CALC  A=? 

4 
=  7 SHIFT  ReIm j3.464   

CALC  A=? 

5 
=  0 SHIFT  ReIm -j1.732   

 

 

Hence the result is { }732.1,464.37,6,464.37,732.1,4)( jjjjkX −+−−= . Similarly the IDFT 

computation can also be done through a similar procedure. Thus 

( +∠−∠−+∠+ AAjAj ��� 180611201)464.37(601*17324
6

1
 

 )AjAj �� 3007321.12401)464.37( ∠−∠+   (19) 

 

Hence the result of IDFT computation is x(n) = {2, 1, -3, 4, 0, 0} = {2, 1, -3, 4}. This method is 

extremely simple, but is not suitable for ordinary scientific calculators. All common calculators do not 

permit complex computations like those advised in Equations (14) - (15) or Equations (18) - (19) for  
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powers higher than 3. For example, in Casio fx-991W S-V.P.A.M., one can adopt another simple yet 

elegant method. Let N
j

ea

π2
−

= , Equation (4) can be rearranged as follows. 

 
 

Table 2:Implementation of Equation (19) 

 

CALC  A=? 

0 
=  2 SHIFT  ReIm j0   

CALC  A=? 

1 

=  1 SHIFT  ReIm j0   

CALC  A=? 

2 
=  -3 SHIFT  ReIm j0   

CALC  A=? 

3 
=  4 SHIFT  ReIm j0   

CALC  A=? 

4 
=  0 SHIFT  ReIm j0   

CALC  A=? 

5 

=  0 SHIFT  ReIm j0   

 

 

))))1()2((...)3(()2(()1(()0()( −+−++++= nxanxaxaxaxaxkX kkkkk
   (20) 

 
Use of Equation (20) can facilitate to overcome the complex power limitation of a calculator. 

Considering the use of calculator memories A and B, and the CMPLX mode, a simple algorithm can 

be suggested as follows.  

 

 BA
N

j
N

e N
j

→→−=
−

)
2

sin()
2

cos(

2 πππ

 

{  
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BAA *=  

)(kXCALC  

Repeat if 1−≤ Nk . 

}         (21) 

 

This simple algorithm may be demonstrated on casio calculators like fx-100MS SVPAM. For 7 point 

DFT computation of the data x(n) = {1, 2, 3, 4}. Select the CMPLX mode. Step by step procedure is 

as follows. 
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Initialize BAjje
j

→→−=−=
−

78183.062349.0)
7

2
sin()

7

2
cos(7

2 πππ

.  

Feed ))43(2(1 AAA +++  

=  X(1)= -2.0245 - j6.2240 

RCL A RCL  B =   AjAB →−−= 974928.022252.0 . 

Display ))43(2(1 AAA +++ , =  X(2) = 0.3460 + j2.4791 

 

Display AAB →  =  -0.9010 - j0.4339 

Display ))43(2(1 AAA +++ ,  =  X(3)= 0.1784 -j2.4220.  

 

Repeat this and obtain X(4)= 0.1784 + j2.4220, X(5)= 0.3460 - j2.4791, and X(6)= -2.0245 + 

j6.2240. The method is so simple that the DFT computation is merely a matter of a minute. IDFT 

computation is similar except the initialization of memories for N
j

e

π2
+

 and each X(k) must be divided 

by N. 

Unfortunately, stacking in CMPLX mode is limited to level 2 only. Moreover, the power of complex 

number is up to only 3, the built-in function. The power may be resolved like 
235 .AAA = . 

Combining the stacking and power resolving, the range for DFT/IDFT computation can be easily 

raised. 

 

 

4. Conclusion 
 

The scheme presented above can be applied to real or complex functions both, with the same ease. 

Radix – 2 algorithms popular for DFT/IDFT computation, but these algorithms also get more and 

more complicated for Radix >3. However, the scheme presented here is simple and is Radix 

independent and can be considered as a tool as far as the textual length of the equations (16) or (17) is 

permissible by a calculator display. For educational purpose, usually small order computations are 

considered, therefore, the scheme presented here can be a useful method. 
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