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ABSTRACT
The Khimti Khola watershed of the Eastern Nepal experiences numerous landslides each year, pose a significant natural hazard 
that can cause property damage and fatalities. In mountainous areas like Nepal, an accurate evaluation of landslide hazards may 
be an essential tool for disaster risk reduction and the strategic planning of development initiatives. To address this concern, a 
landslide susceptibility assessment was conducted in the Khimti Khola watershed, which covers an area of 440 km2. The purpose 
of this assessment is to locate areas that are susceptible to landslides and to provide light on the factors that affect them. A total 
of 415 landslides were identified, covering 1.715 km2 or 0.39% of the entire study area. The assessment derived the landslide 
susceptibility map using the Weights-of-Evidence (WoE) model from selected conditioning factor classes that were processed 
in ArcGIS and categorized into five classes: Very High, High, Moderate, Low, and Very Low. Each of these classes covers 
7.12%, 16.63%, 25.23%, 30.24%, and 20.78% of the total study area, respectively. According to the findings, the Khimti Khola 
watershed has a 33.2% landslide occurrence percentage in the high susceptibility zone, out of the total area. Additionally, the 
very high, moderate, low, and very low susceptibility zones cover 24.35%, 20.75%, 17.08%, and 4.62% area of the landslide 
occurrence, respectively. In this assessment, the Area Under Curve (AUC) is used to validate the model and is plotted using 
ArcSDM. Identified a total of 415 landslides, out of which 311 (75%) were used as training sample for susceptibility mapping, 
while the remaining 104 (25%) were used to validate. The AUC for the landslide susceptibility map is 83%, indicating a very 
good degree of accuracy and satisfaction. The resulting susceptibility map provides information for predicting landslide-prone 
areas. It can be used to minimize the risk of potential landslides, safeguard lives, and prevent property damage. It will be a vital 
tool for disaster preparedness, future construction planning and development projects in this area.
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INTRODUCTION

The mountainous terrain of the Nepal Himalaya 
exhibits a remarkably dynamic and fragile mountain 
landscapes. Every year, Nepal experiences 
numerous landslides, which are influenced by 
factors such as intense weathering, climate change, 
unpredictable hydrology, and human interventions 
like the development of road networks and other 
infrastructure. The Himalayas stand as a highly 
fragile mountain range, primarily owing to the 
inherent geological fragility of their rocks and 
soils (Upreti, 2001). The frequency and impact of 
landslides have grown due to population growth and 
the construction of road networks, infrastructure, 
communities, and lifelines (Guzzetti, 2005).

In Khimti watershed region, many hydropower 
projects lie, some are being under construction, also 
the Feasibility Study and Environmental Impact 

Assessment (EIA) Study of Khimti Those Siwalaya 
Storage Hydropower project is conducting by the 
Department of Electricity Development (DoED), 
which is one of the largest storage capacity reservoir 
projects in Nepal. This region is vulnerable to 
landslides (Thakurathi et al., 2021) thus  it is 
necessary to assess the vulnerability of this area.

Normally, a landslide susceptibility index (LSI) is 
used to perform landslide susceptibility mapping, 
which is determined through various approaches: 
Deterministic (Dai et al., 2002, Chimidi et al. 
2017, Girma et al. 2015); Heuristic approach (Van 
Westen et al., 2000); and Statistical method (Van 
Westen, 1993). The deterministic approach uses 
appropriated mathematical models to calculate 
the safety factor for unstable slopes. Its primary 
emphasis is on hydrological and geotechnical 
characteristics evaluation of unstable soil and rock 
formations (Regmi et al., 2014a). According to 
Regmi et al. (2014a), a heuristic approach is a

Direct as well as indirect mapping that determines 
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Fig.1:  Location map (study area) (a) Dolakha and Ramechhap districts in Nepal. (b) Study area location (Khimti Khola 
watershed) in Dolakha & Ramechhap districts. (c) The Khimti Khola Watershed and other major rivers.

the relationship between the causes of slope failures 
and their occurrence. Statistical techniques include 
statistical study of the geographical distribution 
of landslides and the many factors that contribute 
to their occurrence to determine the connection 
between topographical factors and the occurrence 
of landsludes (Lee and Choi, 2004). Bivariate 
and multivariate approaches are frequently use 
statistical methods for the susceptibility mapping 
of landslide. The bivariate approach compares the 
landslide inventory map with the factor maps to 
assign weights and by superimposing these factor 
maps, susceptibility map of landslide was created. 
Frequency ratio (Thakurathi et al., 2021), Weights-
of-Evidence (Dahal et al., 2008, Mohammady et al., 
2012, Gadtaula and Dhakal, 2019; Batar et al., 2021, 
Cao et al., 2021, KC et al.,2022, Dam et.al.,2022, 
Mandal et.al., 2023) and certainty factor are some 
of the bivariate statistical methods (Devkota et al., 
2013, Pradhan and Lee, 2010) and the multivariate 
methods include logical regression, discriminant 
analysis, and decision trees (Kavzoglu et al., 
2015). Similarly other methods are artificial neural 
networks (ANNs), fuzzy logic, support vector 
machine, neuro-fuzzy model (Pradhan, 2010). 
Several methodologies have been developed for 
assessing landslide hazards, ranging from empirical 
models to advanced statistical approaches. Among 
these methodologies, the GIS-based Weight 
of Evidence method is applied to develop the 
landslide susceptibility map in this assessment. A 

combination of aerial photos, satellite photos and 
images, Geographic Information Systems (GIS), 
remote sensing data and on-site field observations 
are used to create an inventory map of landslide 
and then analyze the factors. The model is validated 
in this assessment using the Area Under curve 
(AUC). ArcSDM, a tool for Receiver Operationg 
Characteristics (ROC) analysis of spatial models 
for GIS, is used to create the graph (Mas J-F et al., 
2013). The assessment provides valuable insights 
into landslide hazard assessment and can be used as 
a reference for future research in other regions with 
similar characteristics.

STUDY AREA

The research area belongs to the Khimti Khola 
Watershed of Eastern Nepal, which is a major river 
system spanning bordered two districts, Dolakha 
and Ramechhap (Fig.1). The area of the watershed 
is around 440 km2. The Khimti Khola begins from 
the southern slope of the Rolwaling Himalayan 
range and flows southward before joining the 
Tamakoshi River which is the major river in the 
Koshi Basin. The watershed is characterized by 
steep slopes, rugged terrain, and high precipitation, 
with an average annual rainfall of 1600-2500 mm. 
the elevation above mean sea level (masl) varies 
from 548 to 5406 meters. 
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Fig.2:  Landslide Susceptibility Assessment by using Weights-of-Evidence (WoE) Model.

Due to its geological setting, topography, and 
climatic conditions, the area is prone to landslides. 
Khimti Khola watershed is susceptible to the 
landslide susceptibility and also data of that region 
is available so this area was chosen for this study.

ASSESSMENT METHOD

The geographic information relevant to our 
research area was obtained from pre-existing 
databases to simplify the numerical evaluation of 
the susceptibility to landslides. This research delved 
into twelve primary factors commonly associated 
with landslide occurrences on a field scale. These 
factors include Slope, Elevation, Curvature, Aspect, 
Topographic Wetness Index (TWI), Standardized 
Precipitation Index (SPI), Distance from streams, 
Landuse/Landcover, Lithology, Distance from 
Thrust/Fault lines, Rainfall Patterns, and Distance 
from Roads. Each of these variables was carefully 
considered in our efforts towards landslide 
susceptibility mapping.

Data Acquisition and Processing

The high-resolution terrain-corrected ALOS 
PALSAR Digital Elevation Model (DEM), 
accessible through the Alaska Satellite Facility 
website (https://asf.alaska.edu), was acquired and 
processed for the current analysis. This DEM boasts 
a resolution of 12.5 meters by 12.5 meters per pixel. 
Utilizing the ALOS PALSAR DEM, thematic data 

layers such as elevation, slope, aspect, curvature, 
standardized precipitation index (SPI), and  
topographic wetness index (TWI) were derived. 
These layers were meticulously prepared using 
ArcGIS 10.8 (ESRI, USA) to cover the entirety of 
the area.

The lithology map was compiled using references 
from the Geological Map of Eastern Nepal (Shrestha 
et al., 1984), data from the Department of Mines 
and Geology (DMG) and supplemented by field 
investigations. For the land use/land cover (LULC) 
map, data were extracted from the ICIMOD regional 
database system. All thematic data pertaining to 
causative factors were readily discerned within the 
GIS tool. These data were derived and analyzed 
based on the Digital Elevation Model (DEM) using 
the Weight-of-Evidence (WoE) model, as illustrated 
in Fig.2, to facilitate susceptibility assessment.

Landslide Susceptibility Modeling

The Weights-of-Evidence (WoE) model represents 
a loglinear adaptation of the Bayesian probability 
model, employing a bivariate statistical approach 
to ascertain the relative weight of evidence. The 
foundational work by Bonham-Carter et al. in 1989 
provides an in-depth mathematical framework for 
the WoE methodology. For every factor considered, 
as every pixel or point on the map represents a 
specific class F, the weights for its presence (W+) 
and absence (W-) of this particular class can be 
computed as described below.
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Fig.3: Several photographs showing the landslides that have been observed in the Khimti Khola Watershed: (a) and (b) 
Landslides triggered by excavation activities, characterized by multiple scarps along the Khawa-Jiri Road Section. (c) Debris 
flows (d) and (e) Landslides induced by excavation activities, displaying multiple scarps along the Hawa-Jiri Road Section 
in the vicinity of Chyama. (e) Ekamphedi landslide, and (f) Google Earth image shows the Ekamphedi landslide located 
downstream from the confluence of Yelun Khola and Khimti Khola of the Shivalaya area.

                            (1)

                            (2)

In the equations provided above and in subsequent 
equations, the variable P denotes probability. The 
Letter L  signifies  that the  landslides are present, 
using a similar method. Here, P(  |L) denotes the 
while L the landslides are absent;	 S i m i l a r l y 
F and probability of class F being absent in the 
presence signifies the specific class pertaining 
to a given factor. As a result, P(F|L) indicates the 
probability of particular class under the presence 
of a landslide, and P(F|   ) Indicates the probability 
of the specific class in the absence of landslides. 
These probabilities can be readily calculated 
from the pixel values within the distribution map. 
P(F|L) = N(F|L)/N(L); N(F|L) is the probability of 
class F given the presence of landslides, and N(L) 

represents the total number of pixels of landslides 
in class F. Likewise, it can be demonstrated that  
P(F|   ) = N(F|  )/N(  ), N(F|  ) represents the number 
of pixels of non-landslide in class F and N(   ) 
denotes the total number of non-landslide pixels on 
the map.

The  weight  for  a specific  class which is absent, 
denoted as, W, in Equation (2), can be determined 
of landslides, and P(  | L) indicates the likelihood 
of class F being absent in the absence of landslides.

Calculating both probabilities is  straightforward; 
P(  |L) = N(   |L)/N(L); N(   |L) represents the number 
of pixels of landslides in all classes other than F.

Similarly, P(F|  ) = N(F|  )/N(  ), N(  |   ) denotes the 
count of pixels representing non-landslide instances 
across all classes except F. The weight contrast, 
denoted as C, signifies the disparity between these 
two weights.

C = W+ − W−	(3)
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Fig.4: Google imagery view of Landslides distribution at the study area.

Fig.5: Map depicting the study area and the inventory of 
landslides present on that area; each region highlighted by red 
polygons indicates the location of a landslide.

The overall spatial correlation between the 
landslides and the particular class of the factor is 
reflected in the magnitude of contrast. A negative 
value implies the absence of spatial association, 
whereas a positive value indicates the presence of 
spatial association. According to Neuhäuser and 
Terhorst, 2007; typically normalize this number by 
dividing C by its standard deviation, represented 
as S(C). The result obtained is a value of C/S(C), 
which acts as a quantitative indicator of the spatial 
correlation’s importance.

LANDSLIDE INVENTORY MAP

Khimti Khola watershed was selected for study area 
based on its susceptibility to landslides. The landslide 
inventory map and conditioning factor analysis were 
conducted using a combination of satellite imagery, 
aerial images, Geographic Information Systems 
(GIS), and on-site observations. The assessment 
identified 415 landslides within the study area, 
encompassing an area of 1.715 Km2, equivalent 
to 0.39% of the total study area. These landslides 
predominantly occurred in regions characterized by 
steep slopes, high precipitation levels, recent road 
construction activities and sparse vegetation cover. 
Different landslides were identified, including the 
reactivation of old landslides, colluvium deposits, 
gully erosion, debris slides, rock slides, rock falls, 
road cut slides, and slope failures.

LANDSLIDE CONDITIONING FACTORS
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Twelve landslide conditioning aspects that are 
critical for this landslide susceptibility assessment 
have been taken into consideration. Using the 
WoE technique, the spatial connection between 
each conditioning factor for landslides and actual 
landslide occurrences has been summarized and 
presented in Table 1. These factors and their 
distributions are described as follows:

Elevation

Pachauri and Pant (1992) reported landslides are 
more likely to occur in places of higher elevation 
and are more susceptible to occur in areas with 
higher relief (Ercanoglu et al., 2004). In employing 
the WoE approach, the elevation factor is utilized 
to assess the association between elevation and 
landslide occurrences. The distribution of landslides 
in the elevation map of the study area is shown in 
Fig.6a. The elevation map has been categorized into 
7 distinct classes: <1000 m, 1000 - 1500 m, 1500 
– 2000 m, 2000 - 2500 m, 2500 - 3000 m, 3000 - 
3500 m, and >3500 m. The most significant positive 
weight contrast was observed in the >3500 m zone.

Slope

Slope plays a significant role in assessing a 
property’s susceptibility to landslides because steep 
slopes are more prone to produce landslides. The 
landslide distribution of the slope map is shown in 
Fig. 6b. The slope map has been categorized into 5 
classes: <15 degrees, 15-30 degrees, 30-45 degrees, 
45-60 degrees and >60 degrees. Evidently, the slope 
angle of 30 - 45 degree has high weight contrast 
correlation with landslide.

Aspect

According to Lee et al. 2004, one of the important 
components in the development of landslide 
susceptibility map is the aspect. The aspect has 
a crucial role in landslides due to its impact on 
moisture and precipitation (Ghimire, M 2011) 
Physically, the aspect relates to factors including 
precipitation, wind impact, sun exposure, and the 
direction of discontinuities influencing landslides 
(Ercanoglu et al., 2004). Nine distinct classes have 
been assigned to the aspect map (Fig. 6c), including 
North, South, East, West, North East, South East, 
North West, South West and Flat. The analysis 
reveals that the southwest facing slope has high 
weight contrast correlation with landslides.

Curvature

Curvature influences the stability of slopes in rugged 

terrain by either focusing or spreading surface and 
subsurface  water,  as  discussed  by  Kayastha  et 
al., 2012. The spatial pattern of landslides in the 
curvature map is shown in (Fig.6d) and has been 
divided into 3 different categories are concave, 
linear, and convex. The analysis reveals that the 
concave has high weight contrast correlation with 
landslide.

TWI

To assess the topographic influence on hydrological 
processes, TWI is often used. It is expressed by the 
following relationship (Beven and Kirkby, 1979)

where a = the total upslope area draining via a 
point and tanβ = the slope angle at the location. The 
topographic wetness index has been divided into 4 
categories; < 4, 4 - 6, 6 - 8, > 8 (Fig.7e).

SPI

The SPI measures the erosive force exerted by 
a stream on the slope, evaluating its ability to 
erode and its influence on stability. This index is 
determined by the relationship outlined by Moore 
and Grayson,1991.

SPI = A tanβ

Here, As represents the flow accumulation area, and 
β denotes the specific slope gradient measured in 
degrees. The stream power index was divided into 
4 categories: <100000, 100000-500000, 500000- 
1000000, and >1000000 (Fig. 7f).

Distance from stream

One significant contributing factor to the incidence 
of landslides is runoff. The closeness of nearby the 
local streams and rivers serves as a proxy for the 
distance from the stream. The distance from the 
stream refers to the distance between the point of 
interest and the nearest stream, which significantly 
influences the stability of the slope.Streams can 
adversely affect slope stability through toe-incision 
or by saturating the lower part of the hillslope 
material due to increasing water levels. The stability 
of a slope may also be significantly influenced by 
its saturation level. The map indicating distance 
from the stream has been categorized into 6 distinct 
classes: <100 m, 100 – 200 m, 200 – 300 m, 300 - 
400 m, 400 – 500 m, and >500 m ( Fig. 7g). This 

s



41

Landslide Susceptibility Assessment Using the GIS-Based Weights-of-Evidence Model in the Khimti Khola Watershed, Eastern Nepal

indicates that distances less than 100 m exhibit 
a significant positive weight contrast, whereas 
distances between 400-500 m display a notably 
negative contrast correlation with landslides, 
suggests that landslides are more likely to occur 
at closer distances and decrease markedly with 
increasing distance from streams.

Landuse/cover

Slope stability is also greatly impacted by land 
cover and use. The forest cover stabilizes the hilly 
slope by holding the soil in place and preventing 
erosion. The ICIMOD, 2013 regional database 
system was used to create the land use/cover map 
of the research area (Fig. 7h). Six unique categories 
have been identified on the land use/cover map: 
forest, shrubland, grassland, agricultural area, 
barren area, and snow/glacier. The barren area 
and following grassland have the highest weight 
contrast correlation with landslides.

Lithology

lithology is a significant factor in landslide 
susceptibility assessment.  Various  geological 
units exhibit varying degrees of susceptibility to 
the dynamic geomorphological processes of the 
Himalayas. The characteristics of the lithology types 
and rock units play a vital role in the occurrence of 
landslides. Predominantly the study area lies in the 
Midland Schuppen zone of the Melung augen gneiss 
belongs to the Ulleri Formation of Lesser Himalayan 
sequence. The lithological map is prepared by the 
reference of the geological map of Eastern Nepal 
(Shrestha et al., 1984), DMG, and from field 
investigations as well. The lithology of study area is 
classified into nine different classes: Undifferentiated 
Hg, Himal Gneiss, Panglema Quartzite, Dware 
Kharka Schist, Ghanapokhara Formation, Seti 
Formation, Kushma Formation, Ulleri Formation 
and Naudada Formation. The main lithology types 
of the study area are gneiss, slate, schist, phyllite, 
and quartzite. The landslide distribution in the 
lithology map is shown in Fig.8i. It shows that the 
highest weight contrast is in the Undifferentiated Hg 
and following the Ulleri Formation.

Distance from thrust/fault

Landslides are commonly associated with tectonic 
fractures, such as faults and thrusts. The existence of 
fault/thrust lines at steep gradients creates favorable 
conditions for slope failure. MCT and some local 
fault lines are considered causal factors for slope 
instability in the study area. MCT and fault lines 
are generated from the geological map of Eastern 

Nepal (MCT) and field investigations as well. 
Notably, the Main Central Thrust (MCT) passes in 
close proximity to the confluence of Yelun Khola 
and Khimti Khola in the Shivalaya area. Ekamphedi 
landslide in the Shivalaya area has been found to 
have a strong correlation with the MCT (Fig.3 f 
and g). The distance from the thrust map has been 
divided into 6 distinct categories: <100 m, 100 – 
200 m, 200 – 300 m, 300 - 400 m, 400 – 500 m, 
and >500 m (Fig. 8j). It shows that distances > 500 
m has a high weight contrast correlation with the 
occurrence of the landslide.

Rainfall

Rainfall impacts significantly to Himalayan 
landslides processes. According to Dahal et al. 2008, 
landslides in the Himalayas are more probable to 
occur when daily precipitation surpasses 144 mm. 
Landslides are more probable to occur as rainfall 
intensity increases. The WoE approach was used 
to examine the  correlation between  rainfall and 
landslides. The representation of landslides in the 
rainfall map is depicted in (Fig.8k) and has been 
categorized into 4 classes: 1600, 1800, 2000, and 
2500 mm. The rainfall class of 1600 mm has a high 
weight contrast correlation with landslide.

Distance from road

In Nepal, roadside slopes are susceptible to small 
to medium-sized landslides with an average daily 
rainfall of 200 to 240 mm (Dahal et al. 2006). The 
excavation activities involved in road construction 
disrupt the natural slopes, elevating the potential 
for landslides. Along the highway, the slope close 
to the toe becomes weaker (Siddique et al., 2017). 
Landslides are frequently seen around road cuts. 
The primary cause of this is that the construction 
of a road degrades the slope’s natural state. 
Furthermore, the road cutting exposes the joints 
and fractures that contribute to slope failures. Road 
construction frequently disrupts the slope and 
accelerates weathering, increasing the chances of a 
landslide happening. The current assessment used 
the distance from the road  as a causal component of 
landslides. The distance from the road map has been 
divided into 6 different categories, which include: 
<100 m, 100-200 m, 200-300 m, 300-400 m, 400-
500 m and >500 m (Fig. 8l). It shows that distance 
<100 m has a high positive weight contrast, while 
distances >500 m has a high negative contrast 
correlation with landslide. This elucidates that the 
slope near to road has more probability of slope 
failures.
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Fig. 6:  Conditioning landslide factor maps of the study area: (a) Elevation; (b) Slope; (c) Aspect, (d) Curvature.
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Fig. 7:  Conditioning landslide factor maps of the study area: (e) TWI; (f) SPI; (g) Distance from stream (h) Landuse/cover.
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Fig.8: Landslide conditioning factor maps of the study area: (i) Lithology; (j) Distance from thrust/fault; (k) Rainfall, (l) Distance
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Table 1: Weight values, variances, and standardized contrasts obtained from the Weights-of-Evidence method for all landslide 
conditioning factors. 

Factors Class Class Pixel
Count

Landslide 
Pixel

Count
W+ W- C S2(W+) S2(W-) S(C) C/ 

S(C)

El
ev

at
io

n 
(m

)

<1000 45137 868 1.623 -0.067 1.69 0.00115 2.26E-05 0.034 49.29

1000 - 1500 183823 1186 0.518 -0.048 0.57 0.00084 5.48E-06 0.029 19.40

1500 - 2000 573510 1846 -0.181 0.041 -0.22 0.00054 1.75E-06 0.023 -9.52

2000 - 2500 952199 2089 -0.565 0.196 -0.76 0.00048 1.05E-06 0.022 -34.78

2500 - 3000 479347 1133 -0.491 0.076 -0.57 0.00088 2.09E-06 0.030 -19.04

3000 - 3500 266202 768 -0.291 0.026 -0.32 0.00130 3.77E-06 0.036 -8.76

>3500 351863 3105 0.833 -0.201 1.03 0.00032 2.87E-06 0.018 57.36

Sl
op

e 
(D

eg
re

e)

<15 357721 620 -0.805 0.077 -0.88 0.00161 2.8E-06 0.040 -21.93

15-30 1497721 3581 -0.482 0.356 -0.84 0.00028 6.69E-07 0.017 -50.09

30-45 876484 5524 0.491 -0.331 0.82 0.00018 1.15E-06 0.013 60.86

45-60 105155 1178 1.071 -0.076 1.15 0.00085 9.62E-06 0.029 39.15

>60 6199 92 1.356 -0.006 1.36 0.01087 0.000164 0.105 12.97

A
sp

ec
t

Flat 0 0 0 0 0 0 0 0 0

North 310143 920 -0.266 0.028 -0.29 0.00109 3.23E-06 0.033 -8.91

Northeast 282192 688 -0.463 0.040 -0.50 0.00145 3.55E-06 0.038 -13.17

East 308042 773 -0.434 0.042 -0.48 0.00129 3.25E-06 0.036 -13.21

Southeast 353727 1266 -0.078 0.011 -0.09 0.00079 2.84E-06 0.028 -3.13

South 351858 1947 0.360 -0.063 0.42 0.00051 2.86E-06 0.023 18.61

Southwest 413861 2431 0.420 -0.093 0.51 0.00041 2.43E-06 0.020 25.22

West 435471 1738 0.032 -0.006 0.04 0.00058 2.31E-06 0.024 1.56

Northwest 387986 1232 -0.198 0.028 -0.23 0.00081 2.59E-06 0.029 -7.91

C
ur

va
tu

re Concave 150969 1352 0.848 -0.077 0.93 0.00074 6.68E-06 0.027 33.86

Linear 993436 4172 0.086 -0.049 0.14 0.00024 1.01E-06 0.016 8.71

Convex 1707676 5471 -0.186 0.226 -0.41 0.00018 5.87E-07 0.014 -30.39

To
po

gr
ap

hi
c 

W
et

ne
ss

 In
de

x
(T

W
I)

<4 477245 1916 0.038 -0.008 0.05 0.00052 2.1E-06 0.023 1.98

4 - 6 1552839 5791 -0.036 0.042 -0.08 0.00017 6.46E-07 0.013 -5.96

6 - 8 608796 2413 0.025 -0.007 0.03 0.00041 1.65E-06 0.020 1.55

>8 204400 875 0.102 -0.008 0.11 0.00114 4.91E-06 0.034 3.26

St
re

am
 P

ow
er

 
In

de
x

(S
PI

)

<100000 2835384 10934 -0.003 0.696 -0.70 0.00009 3.54E-07 0.010 -72.92

100000 - 500000 4804 48 0.955 -0.003 0.96 0.02083 0.00021 0.145 6.60

500000 - 
1000000 938 5 0.322 0.000 0.32 0.20000 0.001072 0.448 0.72

>1000000 2154 8 -0.041 0.000 -0.04 0.12500 0.000466 0.354 -0.11

D
is

ta
nc

e 
fr

om
 st

re
am

(m
)

<100 816596 3998 0.240 -0.115 0.36 0.00025 1.23E-06 0.016 22.40

100-200 645524 2391 -0.040 0.011 -0.05 0.00042 1.55E-06 0.020 -2.52

200-300 496936 1933 0.009 -0.002 0.01 0.00052 2.02E-06 0.023 0.48

300-400 385296 1371 -0.080 0.012 -0.09 0.00073 2.6E-06 0.027 -3.42

400-500 268140 614 -0.522 0.041 -0.56 0.00163 3.74E-06 0.040 -13.96

>500 239612 688 -0.296 0.023 -0.32 0.00145 4.19E-06 0.038 -8.35
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Factors Class Class Pixel
Count

Landslide 
Pixel

Count
W+ W- C S2(W+) S2(W-) S(C) C/ 

S(C)
La

nd
us

e/
C

ov
er

Forest 1933277 6090 -0.203 0.327 -0.53 0.00016 5.19E-07 0.013 -41.25

Shrubland 30366 350 1.103 -0.022 1.12 0.00286 3.33E-05 0.054 20.92

Grassland 288186 2047 0.614 -0.100 0.71 0.00049 3.49E-06 0.022 32.21

Agriculture area 544536 1727 -0.196 0.041 -0.24 0.00058 1.84E-06 0.024 -9.83

Barren area 48663 725 1.363 -0.051 1.41 0.00138 2.09E-05 0.037 37.80

Snow/Glacier 7308 56 0.691 -0.003 0.69 0.01786 0.000138 0.134 5.17

Li
th

ol
og

y

Undifferentiated 
Hg 470362 3520 0.667 -0.206 0.87 0.00028 2.14E-06 0.017 51.62

Himal Gneiss 111649 576 0.293 -0.014 0.31 0.00174 9E-06 0.042 7.34

Panglema 
Quartizite 129332 109 -1.523 0.037 -1.56 0.00917 7.74E-06 0.096 -16.28

Dware Kharka 
Schist 589043 1068 -0.756 0.130 -0.89 0.00094 1.7E-06 0.031 -28.93

Ghanapokhara 
Formation 241673 423 -0.792 0.050 -0.84 0.00236 4.15E-06 0.049 -17.29

Seti Formation 339198 805 -0.487 0.051 -0.54 0.00124 2.96E-06 0.035 -15.23

Kushma 
Formation 818512 3191 0.011 -0.005 0.02 0.00031 1.23E-06 0.018 0.89

Ulleri Formation 142961 834 0.416 -0.028 0.44 0.00120 7.04E-06 0.035 12.78

Naudanda 
Formation 9394 469 0.240 -0.021 0.261 0.00213 0.000112 0.047 5.51

D
is

ta
nc

e 
fr

om
 T

hr
us

t/
Fa

ul
 (m

)

<100 31752 45 -1.003 0.007 -1.01 0.02222 3.15E-05 0.149 -6.77

100-200 31924 111 -0.104 0.001 -0.10 0.00901 3.14E-05 0.095 -1.10

200-300 31828 81 -0.417 0.004 -0.42 0.01235 3.15E-05 0.111 -3.78

300-400 33788 63 -0.728 0.006 -0.73 0.01587 2.97E-05 0.126 -5.82

400-500 34588 45 -1.089 0.008 -1.10 0.02222 2.89E-05 0.149 -7.35

>500 2688276 10650 0.027 -0.607 0.63 0.00009 3.73E-07 0.010 65.31

R
ai

nf
al

l
(m

m
)

1600 84817 878 0.994 -0.053 1.05 0.00114 1.19E-05 0.034 30.88

1800 495412 1968 0.030 -0.006 0.04 0.00051 2.03E-06 0.023 1.62

2000 1552195 6311 0.053 -0.068 0.12 0.00016 6.47E-07 0.013 9.61

2500 719700 1838 -0.413 0.108 -0.52 0.00054 1.39E-06 0.023 -22.33

D
is

ta
nc

e 
fr

om
 R

oa
d

(m
)

<100 236524 1711 0.633 -0.083 0.72 0.00058 4.26E-06 0.024 29.50

100-200 178936 612 -0.120 0.008 -0.13 0.00163 5.61E-06 0.040 -3.15

200-300 154072 441 -0.299 0.015 -0.31 0.00227 6.51E-06 0.048 -6.57

300-400 146528 557 -0.014 0.001 -0.01 0.00180 6.85E-06 0.042 -0.35

400-500 131268 448 -0.122 0.006 -0.13 0.00223 7.64E-06 0.047 -2.70

>500 2004776 7226 -0.067 0.144 -0.21 0.00014 5.01E-07 0.012 -17.92
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Susceptible 
Zone

Class Area Landslide Area Landslide 
densityValue (m2) Percentage 

(%)
Value 
(m2) Percentage (%)

Very Low 92265468.75 20.78 79218.75 4.62 0.09
Low 134283906.3 30.24 292968.75 17.08 0.22

Moderate 112054687.5 25.23 355781.25 20.75 0.32
High 73866250 16.63 569375 33.20 0.77

Very High 31637968.75 7.12 417500 24.35 1.32

Fig. 9: Susceptibility map of study area landslide

Table 2: Susceptible zones and the details of landslide density on the basis of the Weights-of-Evidence (WoE) method.

Fig.  10:  Landslide distribution at different susceptibility 
classes of landslide

RESULT AND DISCUSSION

Landslide Susceptibility Map

A total of 12 factors influencing landslides were 
considered for the susceptibility assessment. In this 
assessment, we can see that the highest positive 
weight contrast was found in the >3500 m elevation 
zone. In the case of slope, evidently, the slope angle 
of 30 - 45 degree has high weight contrast. The 
aspect map shows a significant weight contrast link 
between landslides and the southwest-facing slope. 
The curvature map reveals that the concave has high 
weight contrast. The distance from the stream map 
shows that distances <100 m has a high positive 
weight contrast, while distances 400-500 m has a 

high negative contrast correlation with landslide. 
It shows that while the frequency of landslides 
increases close to streams, it drastically lowers as 
one gets farther away from them. The barren area 
and following grassland have the highest weight 
contrast correlation with landslides. In lithology, 
the highest weight contrast is in the Undifferentiated 
Hg and following the Ulleri Formation. Notably, 
the Main Central Thrust (MCT) passes in close 
proximity to the meeting point of Yelun Khola and 
Khimti Khola in the Shivalaya area. Ekamphedi 
landslide in the Shivalaya area has been found to 
have a strong correlation with the MCT. There is 
a strong weight contrast link between landslides 
and the 1600 mm rainfall class. Regarding the 
distance from the road map, it demonstrates that 
they are more likely to occur at distances less than 
100 meters and more frequently at distances greater 
than 500 meters. This elucidates that the slope near 
to road has more probability of slope failures.

Following the Weights of evidence (WoE) approach 
in ArcGIS, on the basis of the location of all 
landslides, the susceptibility map pf landslide is 
created. Using, the natural breaks method, this map 
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Fig. 11:  Area under curve (AUC). 

is classified into 5 categories as Very High, High, 
Moderate, Low, Very Low (Fig.9). The detailed 
results are summarized in Table 2, with each 
class covering 7.12%, 16.63%, 25.23%, 30.24%, 
and 20.78% of the total area of the Khimti Khola 
watershed, respectively. The landslide density 
is 1.32% in the Very High susceptibility zone 
and 0.09% in the Very Low susceptibility zone, 
respectively.

The findings show that the Khimti Khola watershed 
experiences a 33.2% landslide occurrence percentage 
in the High susceptibility zone of the total area. 
Additionally, the Very Low, Low, Moderate and 
the Very High susceptibility zones cover 4.62%, 
17.08%, 20.75% and 24.35% landslide occurrences, 
respectively (Fig.10).

6.2 Validation of the Model

In this assessment, the model is validated using the 
Area Under Curve (AUC).  The region between 
the horizontal axis and specific curve that depicts 
changes in the classification results is known as the 
AUC curve. The Area Under Curve (AUC) is used 
in this assessment for the validation of the model. 
ArcSDM, a tool for ROC analysis of spatial models 
for GIS, is used to create the graph (Mas J-F et al., 
2013) and plotted using a reclassified landslide 
susceptibility map for both training and validating 
data sets, producing false positive rate (FPR) and 
true positive rate curves respectively.

The assessment identified a total of 415 landslides 
in the Khimti Khola watershed, through which 75% 
of labdslides i.e. 311 were selected as training data 
to build the landslide susceptibility map and the 
remaining 25 % i.e. 104 landslides were used for 
validation. The AUC for the landslide susceptibility 
map is 0.83, 83% (Fig.11), the results demonstrate a 
very good degree of accuracy and satisfaction.

CONCLUSIONS

The landslide susceptibility assessment was 
conducted in the Khimti Khola Watershed with 
an area of 440 km2.  Within the study area, the 
assessment identified 415 landslides, encompassing 
an area of 1.715 Km2, equivalent to 0.39% of 
the total study area. The majority of landslides 
occurred at high elevations, steep slopes, areas with 
high precipitation, and areas with low vegetation 
cover. The high-resolution terrain- corrected ALOS 
PALSAR DEM; 12.5 meters by 12.5 meters per pixel 
resolutions. is utilized for the present assessment. 
Using the Weights of evidence (WoE) technique, 
the study concluded the susceptibility map from 
selected conditioning factors classes processed in 
ArcGIS and in 5 classes, the map was categorized 
as: Very High, High, Moderate, Low and Very Low. 
Each class covers 7.12%, 16.63%, 25.23%, 30.24%, 
and 20.78% of the total study area, respectively.



49

Landslide Susceptibility Assessment Using the GIS-Based Weights-of-Evidence Model in the Khimti Khola Watershed, Eastern Nepal

According to the findings, the high susceptibility 
zone contains 33.2% of landslide occurrence out 
of the total area in the Khimti Khola watershed. 
Similarly, 24.35%, 20.75%, 17.08% and 4.62 % 
landslide occurrence is there in the very high, 
moderate, low and very low landslide susceptibility 
zone. Landslide density in the very high susceptible 
zone is 1.32%, gradually diminishing towards 
the zone with very low susceptibility, where it is 
0.09%. The results of this assessment can be used  
as  a  reference for future research in other regions 
with similar characteristics. In this assessment, the 
model is validated using Area Under Curve (AUC) 
and graphically represented using ArcSDM. In the 
Khimti Khola watershed, total 415 landslides were 
recognized. Among these, 75% of landslides i.e. 311 
were utilized for susceptibility mapping, and the 
remaining 25% i.e. 104 landslides were employed 
for model validating. The AUC for the landslide 
susceptibility map is 83%, indicating a very good 
degree of accuracy and satisfaction.

The resulting susceptibility map provides 
information on predicting areas prone to landslides, 
thus making it a vital tool for disaster preparedness, 
future construction planning and development 
projects. It is recommended that the map be utilized 
to avoid high susceptibility zones during project 
implementation, to minimize the risk of potential 
landslides, and to ensure the sustainability of all 
involved.
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