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Introduction
Over an ideal of a topological space, Kumar 
(1982) has played a topological game. By 
introducing the concept of rectangle in a 
topological product spaces, some special 
types of product are studied. A game is played 
over such products. It is explained how fuzzy 
set theory can be applied to obtain better 
results lastly.
Games over an ideal of a topological space 
Let G (I, X) be an infinite positional game 
of pursuit and evason over I where X is a 
topological space and I   P (X) s.t. I is 
closed with respect to union and I possesses 
hereditary property. Such collection I is called 

an ideal over X. 
This game is played as follows: There are two 
players-P (Pursuer) and E (Evader), They 
choose alternately consecutive terms of a 
sequence <En / n ∈ N, where N = {0, 1, 2,.……….. 
n, ……} > of subsets of X s.t. each player knows 
I, E0, E1,…….,En when he is choosing En+1.
Sequence <En> of subset of X is said to be a 
play of the game if for all n ∈ N the following 
holds:
i.	 E0 = X 

ii.	 E1, E3, E5,………..,E2+1 are the choice of 
P.

iii.	 E1, E3, E5……………..E2n+1 ∈ I.
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iv.	 E2, E4, E6……………..E2n+2 are the choice 
of E.

v.	 E1, E2,  E0; E3, E4   E2……….; 
E2n+1, E2n+2   E2n.

vi.	 E1  E2 = φ, E3  E4 = φ, ………., 
E2n+1  E2n+2 = φ. 

If <E2n> = φ then player P wins the play, 
otherwise Evader wins the play.
A finite sequence <Em / m ≤ n> is admissible 
for the game if the sequence <E0, E1, …….En, 
φ, φ, φ, …….φ> is a play of the game. For 
admissible sequence <E0,……,En> and even n 
if s : <E0,…….En> → P(X) and s (<E0,…….En>) = 
En+1 then s is a strategy for player P.S is said to 
be strategy for evader E if n is odd.
A strategy s is said to be winning for player 
P in the game G(I,X) if P wins each play of 
the game with the help of this s. Similarly s is 
said to be winning for E if E wins each play of 
the game with the help of s.	 We denote 
by P(I, X), the set of all winning strategies of 
P in the game G(I,X) and by E (I,X), the set of 
all winning strategies of E in the game G (I,X).
A topological space X is said to be I-like if the 
set of all winning strategies of player P is not 
empty i.e. if P (I, X) ≠ φ.
Similarly, a space X is said to be anti I-like if 
the set of all winning strategies of player E is 
not empty. That is E (I, X) ≠ φ
The game G(I, X) is said to be determined, if 
P (I, X) ≠ φ or E (I, X) ≠ φ
Products of topological spaces
 A subset A x B of a topological product space 
X x Y is called a rectangle. A rectangle E is 
said to be:
i.	 Cozero if E’ & E” are cozero in X x Y ;

ii.	 Zero if E’ & E” are zero in X x Y ;

iii.	 Open if E’ & E” are open in X x Y ;

iv.	 Closed if E’ & E” are closed in X x Y

where E’ & E” are the projections of E into X 
and Y respectively so that E = E’ x E”.
A topological product X x Y is said to be 

strong rectangular if each locally finite open 
cover of X x Y has a locally finite refinement 
by cozero rectangles.
The following conditions are seen to be 
equivalent:
i.	 The product X x Y is strongly rectan-

gular.

ii.	 Each finite open cover of X x Y has 
a locally finite refinement by cozero 
rectangles.

iii.	 For each closed subset F and each 
open set U of X x Y with F U, 
there is a locally finite collection W 
by cozero rectangles s.t. F  W 

U

iv.	 X x Y is normal and for each zero-set 
F and each cozero-set U of X x Y with 
F U, there is a locally finite col-
lection W by cozero rectangles such 
that F  W  U.

v.	 There exists a continuous map

f : X x Y → [0, 1] such that f (x, y) = ∑ gt (x) ht 
(y),t ∈ Twhere gt : x → [0,1] and ht : Y → [0,1] are 
continuous.        

Games over spaces
Each topological space considered in this 
paper is assumed to be a Hausdorff space. N 
denotes the set of all natural numbers and m 
denotes an infinite cardinal number. Also let 
L = {E1 ‌‌‌‌‌‌‌‌‌¦ E1 are closed subsets of X}.
There are two players P and E. Player P 
chooses a closed set E1 of X with E1 ∈ L and 
player E chooses an open set U1 of X with E1 

U1.
Again, player P chooses a closed set E2 of X 
with E2 ∈ L and player E chooses an open set 
U2 of X with E2  U2 and so on.
The infinite sequence <E1, U1, E2, U2,……> is a 
play of G(L, X). Player P wins the play < E1, E1, 
E2, U2………> if {Un : n ∈ N} covers X, otherwise 
player E wins.
A finite sequence <E1, U1,………, En Un> of 
subsets in X is said to be admissible for G(L, 

Bidyanand Prasad , B.P. Kumar



A
ca

de
m

ic
 V

oi
ce

s,
 V

ol
. 2

, N
0.

 1,
 2

01
2

13

X) if the infinite sequence < E1, U1……..En, Un, 
¢, ¢……….> is a play of G(L, X).
A function s is said to be a strategy for player 
P in G (L, X) if the domain of s consists of 
the void sequence ¢ and the finite sequence 
<U1,………, Un> of open sets in X and if s (¢) 
and s (U1, ……….., Un) are closed in X and 
belong to L.
A strategy s for player P in the game G (L, X) 
is said to be winning if he wins each play <E1, 
U1, E2, U2,………..> in G (L, X) such that E1 = s 
and En+1 = s (U1, …….., Un), for all n ∈ N.
The Following notations are used:
DL – The class of all spaces which have a 
discrete closed cover consisting of members 
of L.
FL – The class of all spaces which have a finite 
closed cover consisting of members of L.
C – The class of all compact spaces.
Cm – The class of m-compact space.
I1, I2 – Arbitary classes of spaces possessing 
hereditary property s.t.
I1 x I2 = {X x Y : X ∈ I1 and Y ∈ I2}.

We define the following two products spaces:
Def 1 : D-Product: A Product space X x Y is 
said to be a D-product if for each closed set M 
of X x Y and each open set O of X x Y with M 

 O, there is a o-discrete collection J by 
closed rectangles in X x Y such that M 

 J O.
For a closed rectangle R in X x Y, R| and 
R|| denote the projection of R into X and Y 
respectively. Thus R is a closed rectangle in X 
x Y iff R’ and R” are closed in X & Y and R is an 
open rectangle in X x Y iff R| and R|| are open 
in X and Y such that R = R| and R||.
Def 2: C-Product space X x Y is said to be a 
C-product if for each closed set M of X x Y 
and each open set O of X x Y with M  
O there is a countable collection J by closed 
rectangles in X x Y such that M  J 

 O.
The following result follows easily.Theorem: 
(1) Let X and Y be spaces such that X x Y is a 
D-Product. If player P has winning strategies 
in G (I1, X) and G (I2, Y), then he has a winning 
strategy in G (D (I1 x I2), X x Y).

Now, we prove the following.
Theorem: (2) Let X be a collection wise normal 
space and Y a subparcompact space with χ 
(Y) ≤ m. If player P has a winning strategy in 
G (DCm, X), then every open cover of X x Y 
with power ≤ m has a o-discrete refinement 
by closed rectangles in X x Y.
Proof: Let s be a winning strategy of player 
P in G (DCm, X). Let C be an arbitrary open 
cover of X x Y with ‌‌¦c¦ ≤ m.
We construct:
i.	 a sequence {Jn : n ≥ 0} collections of 

closed rectangles in X x Y;

ii.	 sequence {<ℜn, ≤ Ψn> : n ≥ 0} of the 
pairs of collections Rn by closed rec-
tangles in X x Y;

iii.	 the function Ψn: ℜn→ℜn-1 ; satisfying 
the following five conditions:

a)	 Jn is o-discrete in X x Y.

b)	 ℜn is o-discrete in X x Y.  

c)	 Each F ∈ Jn is contained in some 
G ∈ C.

d)	 If (x, y) ∈ Rn-1 ∈ ℜn-1 and (x, y) ¢ 
 Jn.

Then there is Rn ∈ ℜn such that (x, y) ∈ 
Rn and Ψn (Rn) = Rn-1.

e)	 for an R ∈ ℜn, let Un = X – R and 
Uk = X – (Ψk+1 0…….0 Ψn (R))’, 
for 1 ≤ k ≤ n – 1.

We put E1= s (φ) and Ek+1 = s (U1,………,Uk) for 
1 ≤ k ≤ n – 1.
Then the finite sequence < E1, U1 … En, Un, > 
is admissible for G (DCm, X).

Let J0 = {φ} and ℜ0 = {X x Y}.We suppose that 
the above {Ji, : i ≤ n} and {< ℜi, Ψi > : i ≤ n } are 
already constructed.
We pick and R ∈ ℜn.
Let < E1, U1, ……., En, Un > be the admissible 
sequence in G (DCm, X).
Hence there is a discrete collection {Cα : α ∈ 
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Ω R} by m-compact closed sets in R| such that 
s (U1, …………………., Un) ∩ R| = ∪ {Cα : α ∈ Ω R} .
We can a choose discrete colletion {Wα : α ∈ 
Ω (R) } of open sets in R’ s.t. Cα ⊂ Wα, for all α 
∈ Ω (R).
Since Cα is m-compact, ¦c¦ ≤ m, χ(Y) ≤ m and 
R” is subparacompact.
There is a collection Jα

n+1 = {CI Uα, i 
λ x Hλ : i 

= I,……kλ and λ ∈ ^ (k)} by closed rectangle 
in R. which satisfying the following four 
conditions:

(1)	 Each Uα, i 
λ  is open in R’.

(2)	 Cα ⊂ ∪ { Uα, i 
λ  : i = 1, …………k⋌} ⊂ Wα

(3)	  Each C1 Uα, i 
λ x Hλ is contained in 

some G ∈ C.
(4)	 {H λ  : ∈ ^(α)} is a σ-discrete closed 

cover of R”. Then Jn+1 (R) = ∪{ Jα
n+1 : 

α∈Ω(R)} is a σ-discrete in X x Y.
Put Uα, 

λ = {CIW α  - ∪ { Uα, i 
λ : i ≤ i ≤ k⋌} x H⋌ }, 

for all ⋌ ∈ ^ (k)
Again put R = (R’-∪ {Wα : α ϵ Ω ®} x R’’.
Moreover, we put ℜn+1 (R) = {R ∪ { Rα 

λ  : 𝜆 ∈ (α)} 
and 𝜆 ∈ Ω(R)}.
Then ℜn+1 (R) is also σ-discrete collection by 
closed rectangles in R.
We set Jn+1 = ∪ { Jn+1 (R) : R ∈ ℜn} and ℜn+1 = ∪ 
{ ℜn+1 (R) : R ∈ ℜn}.
The function Ψn+1 : ℜn+1 → Rn defined as Ψn+1 
(ℜn+1 (R)) = {R}, for all R ∈ ℜ.
From (a), Jn+1 and ℜn+1 are o-discrete in X 
x Y..
The conditions (a) and (b) are satisfied.
By (3), then the condition © is also satisfied.
The conditions (d) and (e) are very clear.
Let J =  {Jn : n ∈ N}.
We can easily show that J is a cover of X x Y. 
Therefore J is a o-discrete refinement of C by 
closed rectangles in X x Y.
With the consequences of the above theorem 
and assuming PCm to be the class of all 
product spaces with the first factor being 
m-compact, the following can be obtained 
easily:I. Let X be a collectionwise normal 
space and Y be a subparacompact space with 
χ (Y) ≤ m. If player P has a winning strategy 
in G (DCm, X), then X x Y is a D-product.

II. Let X be a paracompact space and Y be a 
subparacompact space.

III. Let X be a collectionwise noromal space 
and Y be a subparacomact space with χ (Y) 
≤ m. If player P has a winning strategy in G 
(DCm, X), then he has a winning strategy in 
G (D(PCmm), X x Y).

Fuzzy set coalition
 A game is determined by information, 
decisions and goals. But human notions 
(ideas) and decisions are fuzzy. For, a man 
with immense entropy functions may err, 
set right and understanding a little may 
increases his understanding in the pursuit 
of some knowledge. Therefore, in a game, 
perfect information, decisions & goals may 
not be feasible. We are therefore, led to the 
introduction of fuzzy games.
Let G = (N, v) be a nonfuzzy game of the set 
N = {1, 2, 3, …, n} of n players in which v : s 
→ R is a real valued function (characteristic 
function) from a family of coalition S  N to 
the set of real numbers R. Hence v(A) means 
the gain which a coalition. A can acquire only 
through the action of A, the coalition A can 
be specified by the characteristic function τA 
(i) = {1	 if i ∈ A;/0	 if i ¢ A.
A rate of participation τA (i) of a player i is 
defined by
τA (i) = 1, if a player i participates in A and
τA (i) = 0, if a player i does not participate in A.
Consequently, a coalition A is represented by
τA = (τA (1), τA (2),…….τA (n)).
A fuzzy coalition τ is defined as a coalition in 
which a player i can participate with a rate 
of participation τ1 ∈ [0, 1] instead of {0,1}. 
The characteristic function of a fuzzy game 
is a real valued function f : [0.1]n → R which 
specifies a real number f (τ) for any fuzzy 
coalition τ.
This fuzzy game is denoted by FG = (N, f).
By obtaining this fuzzy game, we can have 
the corresponding results of previous section 
easily which may produce better results.
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Conclusion
In a field of decision theory, game theory has a 
remarkable importance. To play a game over a 
Hausdorff topological space, a new approach 
has been presented in this paper. Human 
ideas, decisions and goals determine a game 
but these notions are fuzzy in nature. Hence 
in a game, perfect information, decisions and 
goals may not be feasible. A good attempt has 
been made to apply fuzzy set theory to obtain 
feasible solution for a proposed problem of 
real life which may be a very useful tool for 
the researcher working in the field of fuzzy 
systems.
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