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Abstract
This paper deals principally with the two integrals, namely Riemann integral 
and Lebesgue integral starting with definitions and their existences. Basically the 
domain of the Riemann integrable function is different from that of the Lebesgue 
integrable function. It is found that every upper (lower) Riemann integral is 
greater than (less than) or equal to every upper (lower) Lebesgue integral. It 
includes that Lebesgue integral is the generalization of Riemann integral and is 
the focus of this paper.
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Introduction

Calculus deals principally with two geometric problems: finding the tangent line to 
a curve, and finding the area of a region under a curve. The first is studied by a limit 
process known as differentiation; the second by another limit process-integration to 
which we turn now.

The two concepts, derivative and integral, arise in entirely different ways and it 
is remarkable fact indeed that the two are intimately connected. If we consider the 
definite integral of a continuous function f as a function of its upper limit, say we write 

F( ) = ,
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then F has a derivative and F’(  = f( ). This important result shows that differentiation 
and integration are , in a sense, inverse operations(Apostal,1994)            

Gottfried Wilhelm Leibniz (1646-1716) could argue that the ordinates to the points on 
a curve represent infinitesimal rectangles of height y and width dx and hence finding 
the area under the curve – “summing all the lines in the figure”-amounted to summing 
infinitesimal differences in area dA, which collapsed to give the total area. Since it was 
obvious that on the infinitesimal level dA = y dx, the fundamental theorem of calculus 
was an immediate consequence. Leibniz eventually abbreviated the sum of all the 

increments in the area (that is, the total area) using an elongated S, so that A =  = 

 (Cooke, 1997).

In nineteenth century, Augustin-Louin Cauchy (1789-1857) established calculus on 
the basis of the modern concept of the limit. He defined the integral as the limit of a 
sum, rather than in terms of anti-derivatives. Returning to the notion that the area under 
a function could be approximated by summing together the areas of approximately 
selected rectangles, Cauchy noted that for continuous functions, the resulting sum 
became more accurate as more rectangles of smaller width were used. But rather than 
using this sum as an estimation for the area under a function, he defined the integral 
as the limit of the sum of rectangles constructed by subdividing an interval, and using 
the value of the function at endpoints to determine a rectangle’s height. Symbolically, 
it can be represented as

 = )( - ), where  represents the right endpoint of 

each subinterval, for each 1 .

Nevertheless, Cauchy’s definition guaranteed the existence of the definite integral 
only for functions with at most a finite number of discontinuities. For this reason, 
Georg Bernhard Riemann sought to generalize Cauchy’s integral so that a wider 
class of functions could be integrated. Riemann did so by allowing the height of 
the approximating rectangles to be determined by any point in the corresponding 
subinterval, rather than merely by the endpoints. Thus, Riemann’s integral took the 
form of 

 = )( - ), where  represents a sample point taken 

from the interval [ , ] (Wells, 2011).
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Henry lebesgue (1875-1941) established the theory of integration, which was a 
generation of the 17th century concept of integration – summing the area between an 
axis and the curve of a function defined for that axis

Lebesgue integral can be seen as a generalization of the Riemann integral, and will be 
the focus of this paper.

Riemann integral

Partition. Let [a,b] be a closed and bounded interval. Then a finite set of real numbers 

P = {xo,x1,x2,……xn} having the property that a = xo x1 x2 ….. xn=b is 

called the partition of [a,b]. For instance, P = {0,  , , ,1} is called the partition of 
[0,1]. The partition P consists of n+1 points. 

Let f be a bounded real valued function on [a,b] and let P = {x0,x1,x2,….,xn} be a 
partition of [a,b].Let Mi,mi be the bounds (supremum and infimum) of f in [xi-1,xi].

Then the two sums 

          U(P,f) = i i

and L(P,f) = i i are respectively called the upper and the lower sums of f 
corresponding to the partition P.

If M, m are the bounds of f in [a,b], we have 

                         m mi Mi M

m i i i i M

m(b-a)  L(P,f)  U(P,f) M(b-a),………………………….(1)

Now each partition gives rise to a pair of sums, the upper and the lower sums. By 
considering all partitions of [a,b], we get a set U of upper sums and a set L of lower 
sums. The inequality (1) shows that both these sets are bounded and so each set has the 
supremum and the infimum. The infimum of the set of upper sums is called the upper 
integral and the supremum of the set of lower sums is called the lower integral over 
[a,b].Thus,

 =inf{U(P,f): P  P[a,b]}
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 = sup{L(P,f): P  P[a,b]}. 

These two integrals may or may not be equal. When the two integrals are equal, we 
say that f is Riemann integral over [a,b] and the common value of these integrals is 

called the Riemann integral or simply integral of f over [a,b] and is written as . 
For instance, a constant function is R-integrable function. The class of all the Riemann 
integrable functions over [a,b] is denoted by R[a,b].

Lebesgue Integral

A set A [a,b] is said to be Lebesgue measurable set if its outer measure as well as 
inner measure are equal. The measure of A is denoted by mA. For instance, every 
open as well as closed sets are measurable.Let f be any bounded function on [a,b] and 
let P = {A1,A2,…..,An} be any partition of [a,b], where A1,A2,……,An are measurable 

subsets of [a,b] such that =[a,b] and m(Ai Aj)= 0, for i j. Such a partition of 
[a,b] would be called a measurable partition of [a,b]. We define

U(P,f) = x)) mAi and

L(P,f) =  mAi 

As the upper and lower Lebesgue sums of the function f corresponding to the partition 

P of [a,b]. Obviously U(P,f) L(P,f) for every partition P. The infimum of the set of all 
upper Lebesgue sums is called the Upper Lebesgue integral denoted as : 

L  = inf U(P,f)  Partitions P.

The supremum of the set of all lower Lebesgue sums is called the Lower Lebesgue 
integral denoted as : 

L  = sup L(P,f)  Partitions P.

A bounded function f on [a,b] is said to be Lebesgue integrable if L  = L 

,

and the common value of these two integrals is called the Lebesgue integral and is 
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written as L . Thus, we have L  = L  = L .

The class of all the Lebesgue integrable functions is denoted by L[a,b]. Thus, if f is 

Lebesgue integrable, then we express by writing f L[a,b].

Lemma : Let f be a bounded function on [a,b]. Then for any two measurable partitions 
P1 and P2 of [a,b], we have

U(P1,f)  L(P2,f) and L   L .

Remarks: Every upper (lower) Riemann integral is greater than(less than) or equal 

to every upper(lower) Lebesgue integral. i.e., R   L , R

  L (Malik and Arora,2010). 

Theorem. Every bounded Riemann integrable function over [a,b] is Lebesgue 
integrable. The converse need not be true.

Proof. If f Riemann integrable over [a,b], then

R  = R  = R .

By the remarks, we have, R   L   L   R

R  = L  = L  = L .

Thus, every Riemann integrable function is Lebesgue integrable. The converse need 
not be true. It can be illustrated by the following example:

Let f be a function defined on the interval [0,1] as follows:

F(x) = 0, when x is rational

       = 1, when x is irrational

This function is not Riemann integrable. For, Let P be a partition of [a,b]. 

Then U(P,f) =  = 1. + 1. +… … +1. =1,and  L(P,f) = 

=0.

  = inf U(P,f) = 1
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 = sup L(P,f) = 0.Therefore,  does not exist.

For Lebesgue integrability, let A1 be the set of all rational numbers and A2 be the set of 
all irrational numbers in [0,1]. The partition P = {A1,A2} is a measurable partition of 
[0,1] and mA1 = 0, mA2 = 1.

L(P,f) = (x).mA1 + (x).mA2 = 0.mA1+1.mA2 = 1

U(P,f) = (x).mA1 + (x).mA2 = 0.mA1+1.mA2 = 1

 (P,f) = (P,f)

 L  dx = L  dx

 f is Lebesgue integrable over [0,l] and L  dx = 1. 

Conclusion

It was found that every upper (lower) Riemann integral is greater than(less than) 
or equal to upper(lower) Lebesgue integral. The Lebesgue ingegral has been seen 
as generalization of the Riemann integral. It means that every Riemann integrable 
function is Lebesgue integrable. But the converse may or may not be true and was the 
focus of our paper. 
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