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Abstract

In the present paper, expansions are obtained for density-independent pair
distribution function and second virial coefficient for D-dimensional molecular
fluid mixtures of dipolar hard D-spheres in the semiclassical limit. Numerical
results for the second virial coefficient are also estimated for binary mixture
of (i) hard spheres and dipolar hard spheres and (ii) hard discs and dipolar
hard discs. It is found that the quantum effects increase with increase of dipole
moment p_ as well as the concentration x,. The purpose of the present work is
to develop a theory for calculating the low density properties of the polar hard
D-sphere fluid mixture in the semiclassical limit. We have also developed the
theory for estimating the quantum corrections to the density independent pair
distribution function (PDF) and second virial coefficient of the polar D-sphere
fluid mixtures.
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Introduction

We have developed a theory for calculating the quantum corrections to the low density
equilibrium properties of polar hard D-sphere fluid mixtures with D=2 and 3 in the
semiclassical limit. Equilibrium behaviour of pure polar hard sphere fluid (D=3) and their
mixtures is of great importance. A considerable progress has been made for classical fluid and
fluid mixtures of hard sphere molecules with additional electrostatics. Gokhul & Sinha (1997)
have calculated the virial equation of state for classical polar hard D-sphere fluid mixtures
with D=2 and 3. Rai et al. (1990) have calculated the first quantum corrections to the
thermodynamics of polar hard sphere fluids and fluid mixtures.

Moreover, we have also developed the theory for estimating the quantum corrections to the
density independent pair distribution function (PDF) and second virial coefficient of the polar
D-sphere fluid mixtures.
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Potential model
We have considered a D-dimensional fluid mixture of hard D-sphere with embedded central

point dipoles. In this case the pair potential is given by

_ . he dd
uab(rwlwz) = uab(r) + uab (rmlwz) (1)
Where u Zgis the hard sphere (or hard disc) potential

ugg(r) = 0 , I<G,b

)
= (o] , I>0O4p

and uggis the dipole-dipole interaction given by
ugg(rwlmz) - - (pabt/1°)3p(3, 2)
3)

where 1, is the dipole moment of a molecule of species a and 8p (3, 2) is the angle-dependent
part of interaction. For two-dimensional system (D=2) 8p (3, 2) is given by

dp (1,2) = Cos(0, + 6}, - 6;p) (4)

Where 6,, 6, and 6,, are the angles that determine the orientation of molecules with respect
to the line joining the centres of molecules. On other hand, 8p(1, 2) for a three-dimensional
system (D=3) is given by (Hirsch felder et al, 1954)

op(1,2) = 2Cos0, CosOy, - Sinb, Sind, Cosd,y (5)
Here 6,, 6, and ¢,, = ¢, - ¢, determine the orientation of the molecules with respect to the line
joining the centres of molecules. In Eq. (2) o, is the diameter between the hard D-spheres of
species a and b. For unlike interactions, o,y is given by

Gap = (Gn + Gzz) / 2

Density independent pair distribution functions for D-dimensional molecular fluid
mixture
In analogy to that of pure fluid, it is shown that the path distribution function nab2 (x,, X5),
giving the probability of finding a molecules of species a at x, = 1,0, another molecule of
species b at x, = r,m,, can be expanded in power of density p, = N,/V
n;b (xv Xz) = PaPb W;b (xv Xz) +0 (papbpc)

(6)
Where w;b (x,, x,) is the two particle Slater sum. In the low density limit, the pair
distribution function (PDF) defined as
8ab (xv Xz) = n;b (xv Xz) / Pa Pb
is equal to the Slater sum Wzb (x,, x,). Thus the density independent PDF for D-dimensional

system is defined as

* A
gab(xlxz) = Wzb (Xv Xz) =2! ljf (ga’ gb)il ZW (XD Xz) exp (_B H2 ) l// (XI? Xz) (7)
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A 2 2 2 2
Where, H, = > 1h*/2m,» V5 =Y 1212} )Y Vi +u,(x,,x,)
a=l i=1

a=1 i=1
(8)
and Y,(x, x,) is a set of orthogonal two particle wave functions. Using the centre of mass and
relative coordinate R and r = (1, - r,), we can write eq. (7) as

* A
gab(xlxz) = ZD/Z Z/an (ga; gb)il Zl// (I‘(DI(D;_) exp [_B HV@I )]‘{Ix (ra)la)Z)

(9)
A 2
Where, H,,, =-(h*/my)\/ —(1*/21,,)> V2 +u,, (row,)
i=1
(10)

is relative Haliltonian of two particles of species a and b, m,, = 2m,m;/(m,+m;) and 1, =
211, (I,+1,), where m, and 1, are, respectively, the mass and moment of inertia of a molecule of
species a. In eq. (9), B = (KT)™ (T being the absolute temperature and K be the Boltzmann

factor). In the classical limit, eq. (9) reduces to classical PDF g;b (ro,m,), given by
g o (r0,0,) = exp [-Bua(ro,m,)]
(11)
In the semiclassical limit, for hard-core plus attractive tail potential, eq. (9) can be solved to
give (Singh et al., 1991)
gab(r(’%wz) = exp ['Buab(r(’%wz)] [ 1+ U:}l, (VC()] a)z) r= Oab (12)

= 0 <G

m __ mtr m,rot
Where, U], =U]" +U;

(13)

with

Uy (royw,) =U 5" () +U ;" (roo,)
(14)

Uy (row,) = UZ;W (royw,)
(15)

Here U;’;’hc is the 'modified’ Ursell function of the hard D-sphere mixture, U:b’tr and U(ijt

are the 'modified’' Ursell functions arising from the translational and rotational contributions
of perturbation potential, respectively. They are given by

UL (reow,) = —(h B 16m,,)[V2U? —(1/2) B(0u?, | 8r)’ +3(0u’, | ord(r — o)

(16a)
and
2
UL (rayw,) =—(* B2 1121,) > [Vioul, —(1/2) BV ,ul)’]
i=1
(16b)

where, (0/0r)[g%(r)=8(r—-o,)+0(1,/c,,)

Here § is the Dirac & - function. In the semiclassical limit, U:,’)’hc is given by (Singh et al., 1991)

U™ (r) = —exp[~&4 1+ (D — 1)/ 2:21( A, | 7,,)E2, erfec (&,,)
(17)
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Here &, = [(27)"? (A 1o )I(r/ o, )—1] and erfec (&,,) is the complementary error

function.
The angle - averaged (density independent) PDF is defined as

0 0
(1) =< g, (ro,w,)> o,

(18)
Where, <......>0,0, = Q7 ”()a)la)z
(19)
Substituting eq. (12) in eq. (18) and integrating over angles, we get
Gan (%) =< gy (r*) + g )" (r*) + g ;" (r*) > 2 o
=0 * <G,
(20)
Where
g () = [+l )]+ Y (as, [2mD((1)" 1777)]
n=l1
(21)

g’ (%)=((Ay/0,)" | 24m)[(4D + D*)r** ~(6D/r*)5(r * —D]i(afn J2n=1!)((sy )" 1)

n=l1

(22)
QL () = (G 0,)* 1242103 (@b, 2n = D)((k3y) ™ 17727

n=1
(23)
%2 n
Where, r* = 1/6,, 4, =BHalb/ O'an, Aap = Lp/map O'jb and azD” =< 5[2, (1,2) > o,m,

The values of aﬁ for D = 2 and 3 are reported by (Singh et al., 1991) for the first few values of n.

Second virial coefficient of polar hard D-sphere fluid mixture
We consider the second virial coefficient for D-dimensional fluid mixture of hard D-spheres
with embedded central point dipoles. In this case pair potential is given by eq. (1).

The second virial coefficient for the D-dimensional fluid mixture is given by

B(D) = -(1/2) zxaxb jd”z <lg,(ro,w,)-1]> w0,
a,b

(24)
Where g,,(ro,m,) is the density independent PDF of the semiclassical molcular fluid mixture
of species a and b, and x, =N,/N is the concentration of species a. For a polar hard D-sphere
fluid mixture, gab(rw,m,) is given by eq. (12)
Substituting eq. (12) in eq. (24), we obtain an expression for B(D) in the form
B(D) = BY(D) + [B¥(D)]x + (B*(D)] ot
(25)
Where,
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BY(D) =-(1/2) Y x,x, [dr, <exp[—pu,, (xx,)]-1>00,
a,b
(26)

[B*(D)]e = -(1/2) Z'xa'xb Jdr, < expl[—Pu,, (xx,)U 5" (x,x,) > 0,0,

a,b
(27)
[BI(D)]roe = -(1/2) ) x,X, [ dr, < exp[—pu,, (x,x,)U""" (x,x,) > 0,0,
ab
(28)

Here B°(D) is the classical second virial coefficient of the polar hard D-sphere fluid mixture,
[B¥(D)],, and [B™(D)], are the contribution to the quantum corrections to the second virial
coefficient due to the translational and rotational parts, respectively. Here <(...)>®,0, is given
by eq. (19), where
doy; =do; forD =2

= Sin6; d6; do forD=3
and for linear molecule, Q =2nforD=2and Q =4nforD =3

Gokhul & Sinha have calculated the classical second virial coefficient of dipolar hard
D-sphere, fluid mixture (with D = 2 and 3). Thus the result is

BY(D) = (n"*/2I (1+D/2)) Zx X,0 1= Z(afn /(2m)!(2n = 1)) (1) ]

n=1

(29)
Where I'(1) is the Gamma function. eq. (29) is an exact expression for B°(D) with D= 2 and 3.

.
This is monatonically decreasing function of £, .

In order to evaluate eq. (27), we make use of a Taylor expansion of ,u;lf (roy,,) about

., and substitute eq. (14) in eq. (27), we get the following expression for [B*(D)];, for dipolar
hard D-sphere fluid mixture.
[B(D)], = (n”"*/2I'(1+D/2))

o 5 AN UGB s 8+

Where,
Béb (D)), =< eXp[_ﬂﬂ:fZ (0,0,0,) > 0,0,
(31)
(D))tr =< exp[— ;B,U (0,0,0,)> w0, —(1/2(D-1) < ﬂgabluab (Gaba)] ®,)]
(32)

exp [-
B (o, 0,0,)]> oo, + (/4D 1) jdr*r*D'<(au (r* w,0,)/ 0r*)

exp [-B ”ab (7” 0,0,)] > 0,0,
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dd’ dd
Where, u;, =0u,, /Orandr*=r/cy,

Similarly substituting eq. (15) in eq. (28), we get

[BE(D)]we = (x”/2F(+D/2)) D x,x,05[(D(D =1)/ 67, )(BL, (D)), (A / T 0)” +...]

a,b
(33)
Where,
(
sz[b (D)), =1/4(D - 1))ﬂjdr *rPT < vj}iujg (r* wlwz)eXp[_ﬂujZ (r*mw,)]> oo,
1
(34)

o 2
and lab = lab /mabO'ab

Finally eq. (25) can be written as

B(D) = B(D) + (x”* /2T (1+D/2)) > x,x,05[(d / 242)(B.,(D)(4,, / 7,,)
a,b

+(D(D-1)/6m) (B (D))(A,, /G ,)° +...]

(35)
Where, Béb (D) = (Béb (D)),
(36)
B,,(D) = (B, (D)), +(,)" (B,,(D)),,
(37)

Thus like one component fluid the first order quantum correction arises from the
translational part only where as the second order quantum correction is due to the
translational and rotational contributions.

In case uj,f =0, we have
B, (D)=1
B,,(D)=(B,,(D)), =1
Which are correct for hard D-sphere fluid mixture (Mishra & Sinha, 1985)

For the dipole-dipole potential model given by eq. (3), the quantum correction terms
are given by

(B!, (D)), =1+(al /2)(1,)* —(al 124)(u}y)* +(al 1 720)(p),)°
(38)
(B! (D)), =1+((D* ~2D~4)/ 4D ~1)(D+2))a’ (i, )" ~ (10D ~4)/48(D~1)3D +2)a? (.,)*
H(5D +18D + 4)/1440(D1) (5D+2)) @ (411y)* + .. (39)
and
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(Biy (D)), = (az 1 4D)(uy,)" = (af 1 72D)(uay,)" + (g /2400D) ()" +...

(40)
We calculate these coefficients using Pade' approximant constructed with last two terms in
each series.
We consider a binary mixture of hard D-sphere (Species 1) and dipolar hard D-sphere (species
2) having the same diameters i.e. 6, = G,, = ¢ . Further we assumed that molecules of species 1
and 2 interact via hard D-sphere potential. In this case the hard D-sphere is taken as the
reference system. Then eq. (36) reduces to

B(D) = BYD) + BS.(D)(D/22)(B' (D))A/0)+(D(D—1/67)B"D)(A/05)* +..]

(41)

Where

B(D) =1+ x;[Bi,(D)—1]
(42a)

B"(D) =1+ x;[BL,(D)—1]
(42b)

(Baus & Colot, 1987)
B (D)=[z""?/2I(1+ D/2)]c”

is the classical second virial coefficient of the hard D-sphere fluid.

Table 1 shows the magnitudes of the quantum correction coefficients for a binary mixtures of
hard D- spheres and dipolar hard D-spheres (with D = 2 and 3) having the same diameter as a
function of ,u*zs ,u;; for x, = 0.5 and 1.0. The values of B'(D) and B"(D) decrease with
decrease of x, and reduces to unity x, = 0.0. Further we see that the second order quantum

. 2 . .
correction depends on the values of £ *” and 1*, which the second order quantum correction

depends only on the value of u *2

The second virial coefficient B*(D) = (B(D) / o) for the binary mixture of hard discs and
dipolar hard spheres (HS-DHS) are reported in Figs. 1 and 2, respectively, as a function of

M *2 with I* = 0.07 for x, = 0.5 and 1.0 at 4/c = 0.0 and 0.1. The case 1/c = 0.0 corresponds to

the classical values. We find that the quantum effects which increase with increase of z**,

decrease with increase of x,.

LU

Table 1: Quantum correction coefficients B-'(D) for binary mixtures of hard D-spheres and dipolar

hard D-spheres (D=2 and 3) as a function of p"z

o uez = x:;.?.S B = Xz;l‘ll.o B
T tr rot tr tr rot
2 0.0 1.000 1.000 0.0 1.000 1.000 0.0
1.0 1.067 0.821 0.033 1.266 0.285 0.130
2.0 1.320 -0.040 0.147 2.281 -3.160 0.589
3.0 1.995 -3.242 0.485 4.938' -15.969 1.621
3 a.0 1.000 1:000 o.c 1.000 1.000 0.0
1.0 1.094 0.829 0.015 1.376 0.315 0.06C
2.0 1.561 -0.655 0.079 3.202 -5.225 0.315
3.0 3.736 -55.289 0.318 11.938 -220.158 1.270




B*(2)

2 T T L] T 1

Fig.1 The second virial coefﬁcienzt B*(2) of

HD-DHD mixture as a function of u* with |I* =
0.07 forxa = 0.5 and 1.0 at Mo = 0.0 and 0.1.
The thick line represents /o = 0.1 and dotted

1] 05 1 15 2 2.5

Fig.1 The second virial coefficient B*(3) of

HS-DHS mixture as a function of p‘z with I* =
0.07forxz=0.5and 1.0at /o =0.0and 0.1.
Keys The Keys are same as Fig.1.

line Mo =0.0

Conclusion

From explicit expressions for the density independent PDF g,,(rm,®,) and second virial
coefficient for the dipolar hard D-sphere fluid mixture, we find that the quantum effects

. 1 2
increase with increase of 1 *” as well as x,.

Acknowledgement

We would like to acknowledge the contributions of other members of Department of Physics
Thakur Ram Moltiple Campus, Birgunj without which this article would not have been
possible.

References

Baus, M. & Colot, J. L. (1987). Thermodynamics and structure of fluid of hard rods, disks,
spheres or hyperspheres from rescaled virial expansions. Phys. Rev. A, 36, 2912-3925.

Gokhul, S. K. & Sinha, S. K. (1997). Virial equation of state of polar hard D-sphere fluid
mixture, Indian J. of Pure & App. Phys., 35, 499-507.

Hirsch felder, J.O., Curtiss, C.F. and Bird, (1954). Molecular theory of gases and liquids. New
York : Wiley.

Mishra, B.M. and Sinha, S. K. (1985). Semiclassical statistical mechanics of two dimensional
fluid mixture of hard discs, J. of Math. Phys., 26, 495-504.

Rai, B., Prasad, N. and Sinha, S. K. (1990). Quantum corrections to thermodynamics of polar
hard sphere fluids. Pramana J. of Phys., 35, 533-555.

Singh, S. K., Prasad, N. and Sinha, S. K. (1991). Semiclassical statistical mechanics of simple
molecular fluid one, equilibrium properties of dilute two and three dimensional fluid.
Physica A, 179, 378-410.

Academic Voices, Vol. 5, No. 1, 2015

v
v



