Seasonal Changes in Water Quality Parameters and Sediment Nutrients in Jagadishpur Reservoir, a Ramsar Site in Nepal

Biraj Gautam and Bikash Bhattarai
Central Department of Environmental Science
Tribhuvan University, Kirtipur, Kathmandu
e-mail: jibiraaj@gmail.com

Abstract
Physical and chemical characteristics of waters in reservoirs are influenced by seasonal fluctuations in water and also by agricultural runoff. Such fluctuations are more frequent in Jagadishpur reservoir where rain events are strongly seasonal. To carry out the study, water samples were collected from six sites where as the soil samples were taken from four sites in four seasons (winter, spring, monsoon and autumn) in 2006. The soil and water nutrients both varied seasonally affecting the productivity of the reservoir. The productivity of the reservoir was maximum in monsoon and minimum in autumn. The release of phosphorus and nitrogen from the lake sediment to water column plays a key role in determining the nutrient level in reservoirs. The reservoir was found to be polytrophic: eutrophic on the basis of transparency and total nitrogen and hypereutrophic on the basis of phosphate concentration.

Key words: productivity, polytrophic, eutrophic, hypereutrophic

Introduction
Nepal's wetland habitat is created through varied water bodies that range from permanent flowing rivers to seasonal streams, low land ox-bow lakes, high altitude glacial lakes, swamps, marshes, paddy fields, reservoirs and ponds (Bhandari 1992). Lowlands of Nepal boats the most extensive wetland systems which include river systems, marshes, ox-bow lakes, ponds, man-made reservoirs and paddy fields. The ecological diversity of wetlands systems is reflected in the great variety of wetlands flora and fauna (BPP 1995). These areas provide various products such as live stock grazing, fisheries, recreation and the conservation of the biology, fodder and timber and are sites for feeding and breeding for various species of resident and migratory birds (Sah 1997). Wetland sites including Jagadishpur Reservoir (a Ramsar site) are highly prioritized wetlands of lowland Nepal to prevent deterioration of the myriad ecological (biodiversities) functions and values (BPP 1995).

Physical, chemical and biological features in reservoirs are influenced by seasonal surface level fluctuations, which are significantly associated with anthropogenic utilizations (Wetzel 1990, Geralds & Boavida 2005). Such fluctuations are more frequent in reservoirs located in regions where rain events are strongly seasonal and occur in an irregular precipitation regime (Geralds & Boavida 2005). The broad objective of this investigation is to asses the relationship between the water and sediment characteristics to assess the limnological status of the reservoir in order to suggest the appropriate measures for conservation practices. The specific objectives are (a) to assess and understand seasonal variation of water quality of Jagadishpur reservoir and (b) to assess the trophic status of the reservoir and nutrient availability in the sediments.

Study Area
The Jagadishpur reservoir is situated approximately 4.8 km east of Banganga River 10 km north of Taulihawa, district headquarter of Kapilbastu and 8 km south of Banganga bridge along the eastern embankment road, Niglihawa VDC, Kapilbastu District, Lumbini zone, at geographical coordinates of 27°35’00.0"N and 83°05’00.0"E (DNWPC-IUCN 2002) (Fig. 1).

The reservoir is constructed for irrigation purpose and is harnessed by rock fill dike. Its surface area is approximately 157 ha at full storage level with a total shoreline perimeter of approximately 5 km. At FSL (EL 110m) the storage capacity is 45*106 m³ with a maximum depth adjacent to the dam wall and average depth 3m (Srivastav 2006). The dam has a selective depth discharge system ensuring the best quality water.
is released through the withdrawal outlet to meet farmland irrigation and downstream needs. An earthen dike runs north to south from the centre of the reservoir. The eastern part has shallow water body whereas the western part of the reservoir is deeper and completely covered by water.

The main riverine input to the lake is the Banganga river from the west of the reservoir. The average annual rainfall in the catchments approximately ranges from 1818 to 2520 mm. It is expected to be less than 2000 mm in the northern part and in the foothills, the annual rainfall is expected to be above 2500 mm (averaged over the last fourteen years, DHM 2005), with 88 percent of the rainfall was limited within the months of June to September.

Fig. 1. Study area showing sampling sites

Materials and Methods
Experimental design
For the analyses, four sites were selected to carry out water and soil sampling (Sites 1, 3, 4 and 5) along with two additional sites (Sites 2 and 6) for the water alone. Both water and soil samples were taken for four seasons (winter, spring, monsoon and autumn) once in each season in 2006. The sampling date and time were selected in such a manner that the impacts of rainfall was minimum (samplings during rainfall or immediately after the flooding were avoided).

Site 1: This site was selected in feeding canal to the reservoir, about 70m distance from the confluence of the reservoir during its lower water level (at the time of pilot survey). Its sandy bottom consisted predominantly gravels and sand. Occasional occurrence of green algae was attached with stones.

Site 2: It is located in the confluence of feeding canal. Its muddy bottom was made of clay, silt and sand with dominance of macrophytes.

Site 3: This site was selected in the southern outlet of the reservoir. Its muddy bottom consisted of clay, silt and sand with little macrophytes.

Site 4: This site was located inside and within the south eastern outlet of the reservoir. Its muddy bottom consisted of high level of organic matter, clay, silt and sand, with seasonal macrophytes.

Site 5: This site was selected in the reservoir within the main outlet. Its muddy bottom consisted clay, silt, sand and gravels, with seasonal macrophytes. Eastern dike was covered with planted trees.

Site 6: This site represented the middle of the reservoir south to the island. Its muddy bottom consisted of clay, silt, sand with seasonal macrophytes. The island was covered with terrestrial and swampy vegetation.

These sites were selected so that they could represent the overall conditions of the reservoir- canal, inlet (transition between lentic and lotic), reservoir (center of the reservoir) and outlet.

Field and laboratory measurements
Discrete grab samples were taken from the pre-determined sites at a depth of 0.5 m. Water samples were taken with the help of Freiendinger Water Sampler (Ruttner) of diameter 8 cm, length 60 cm and capacity of 500 ml after flushing it in situ for three times. The initial idea to analyze water quality parameters (DO and Temp) along the water depths was not feasible due to shallowness of the reservoir and also the data collected in different depth did not vary significantly. Therefore the samples were taken only from a depth of 0.5 m from the surface to overcome with the possible interferences on the surface and to represent the best condition prevailing at the sites. Clean plastic bottles of different sizes (500 ml and 1000 ml) were used to collect the various samples. These sampling bottles were rinsed twice with respective water samples and filled air tight. All the sampling bottles were marked and kept in ice boxes. For the determination of potassium, the sample
was adjusted to pH less than 2 with the help of nitric acid. The bottom sediment samples were taken with the help of Grab Sampler (Van Veen Grab with sampling area 0.025 m², Wagtech Company). The parameters like temperature, pH, transparency, dissolved oxygen, free carbon dioxide were measured immediately on the site at the time of sampling and the parameters like alkalinity, hardness, and chloride were measured within few hours after collection of samples. The other parameters were determined in the laboratory where the samples are preserved in refrigerator (Kelvinator, Model KCF 0310 OS). The above mentioned processes were followed to collect the water samples throughout the study period.

Physico-chemical analysis of water
All the physico-chemical parameters (except total nitrogen) were determined according to the methods described in APHA, AWWA, WEF (1998). The total nitrogen was determined according to the methods described in Trivedy and Goel (1984).

Soil laboratory analysis
All the analyses were done following the standard methods given by Trivedi & Goel (1984) except triangular classification of soil and mineral identification. For the triangular soil classification USDA particle soil classes (Goldman et al. 1986) and for mineral identification and composition, counting method given by Pettijohn (1984) was used.

Results and Discussion

The water temperature was maximum (31.67±2.25°C) in monsoon and was least in winter (22.83 ± 1.32°C). There was distinct seasonal variation in the surface water temperature (Fig. 2). This change in water temperature was directly related with soil temperature, as they showed perfect correlation (r=0.96). Temperature is a factor of great importance for aquatic ecosystems as it affects the organisms as well as physical and chemical characteristics of water (Delince 1992, Abdo 2005). Water temperature regulates ecosystem functioning both directly through physiological effects on organisms, and indirectly, as a consequence of habitat loss. Water temperature showed positive correlation with pH and conductivity and negative with DO and the data obtained in the study also followed the pattern as observed in the

![Fig. 2. Seasonal variation of temperature](image)

![Fig. 3. Seasonal variation of pH](image)
to the decrease in the reaction rate confirming the findings of Abdo (2005).

The dissolved oxygen (DO) was maximum (8.72 ± 1.62 mg/l) in winter and minimum (5.12 ± 0.91 mg/l) in monsoon (Fig. 4). The DO was positively correlated with transparency (r=0.9) and negatively correlated with water temperature (r=-0.86). The seasonal patterns of DO in tropical reservoirs are likely to differ from their temperate counterparts because warm tropical waters are more susceptible to oxygen depletion. This may be due to the reduced solubility of oxygen in warm waters coupled with higher rates of microbial metabolism.

The dissolved oxygen (DO) was maximum (8.72 ± 1.62 mg/l) in winter and minimum (5.12 ± 0.91 mg/l) in monsoon (Fig. 4). The DO was positively correlated with transparency (r=0.9) and negatively correlated with water temperature (r=-0.86). The seasonal patterns of DO in tropical reservoirs are likely to differ from their temperate counterparts because warm tropical waters are more susceptible to oxygen depletion. This may be due to the reduced solubility of oxygen in warm waters coupled with higher rates of microbial metabolism.

The relative decrease in chloride concentration during the hot period especially in autumn may be due to dilution after rainy season. The highest value of it during the winter may be due to reduction of water level in the reservoir.

The soil type falls under the category of sand and loamy sand on the basis of triangular classification. The sediments at the inlet of the reservoir consists of sand with more than 90 percent of sand particles and other parts of the reservoir have loamy sands with more than 10 percent of clay and 30 percent of silt. The mineral composition of bottom sediment of the reservoir consists of about 43 percent of rock fragments, 30 percent of quartz, 16 percent of feldspar and remaining includes others, which were not identified (Fig. 6).

Fig. 4. Seasonal variation of water parameters in mg/l

The maximum value of conductivity in water was 409 ± 72.45 µS/cm in winter and lowest of 359 ± 82.52 µS/cm in spring (Fig. 5). Similar trend was also observed in the same reservoir by Me Eachern (1996).

The maximum value of conductivity in water was 409 ± 72.45 µS/cm in winter and lowest of 359 ± 82.52 µS/cm in spring (Fig. 5). Similar trend was also observed in the same reservoir by Me Eachern (1996).

Fig. 5. Variation of conductivity (µS/cm)

However, the maximum of 385.6 µS/cm in monsoon and minimum of 297 µS/cm in winter was observed in case of sediment. The highest value of chloride was observed in winter (16.89 ± 3.87 mg/l) and minimum in autumn (0.75 ± 0.13 mg/l).

Fig. 6. Mineral composition of sediment

Except the inlet of the reservoir, other parts have high degree of finer material. Texture of sediment will determine the type and abundance of macrophyte species that can survive in a location (Barko & Smart 1986). Xu et al. (2003) have mentioned that the concentration of TN and TP declined with the increase in lake sediment size diameter. The availability of mineral nutrients for growth is highest in sediments of intermediate density, such as silt (Barko & Smart 1986).

Fig. 7. PO₄³⁻ (mg/l) in sediment (Bar) and water (line)
Redox potential, pH and sorption/desorption processes have been considered important factors regulating the exchange of nutrients between sediment and the bottom of the water column (Goedkoop & Pettersson 2000, Watts 2000). Hu et al. (2001) showed that higher pH and anaerobic conditions (Eh <+100 mV) in the overlying water greatly stimulated P release from bottom sediments. Calcium (Ca++) concentration in combination with temperature and pH can induce precipitation from the water column and enhance sediment adsorption (Burley et al. 2001).

The concentration of soil phosphate (PO$_4^{3-}$) varied seasonally. Its maximum value (41.75 mg/l) was observed in autumn whereas the minimum value (24.36 mg/l) in winter (Fig. 7). The lake bottom acts as a sink for TP instead of as a source. The behavior of the balance of PO$_4^{3-}$, however, is the opposite, the sediment being a source of this nutrient to the lake (Anda et al. 2001). Internal phosphorus recycling from bottom sediments to the euphotic zone can initiate and sustain both algal blooms and eutrophication, even when external P sources decreased (Welch & Cooke 1995, Boers et al. 1998, Harremoes 1998). Thus, the control of eutrophication depends on both Pretention in the bottom sediments and Premoval from the water column (Welch & Cooke 1995, Boers et al. 1998, Burley et al. 2001).

The percentage N in soil varied seasonally showing maximum of 0.479 in monsoon and minimum of 0.294 in winter (Fig. 8). According to Martinova (1993), the N concentration in the sediments is controlled by the presence of organic matter, with 90% (or even more) of the N in the sediment existing in organic forms. The higher the organic matter content in sediment, the lower is the alkaline phosphorus activity (Venkateswaran & Nataraian 1983, Jin et al. 2006). Based on Healey and Hendzel (1979) for N deficiency criterion (C:N ratio < 9 no deficiency, 9-15 moderate and > 15 severe) the reservoir was no deficiency in most of the time.

The maximum concentrations of NO$_3^-$ (200.66 ± 55.04 µg/l) and PO$_4^{3-}$ (387.33 ± 199.34) µg/l in water were observed in monsoon whereas the minimum value of NO$_3^-$ (56.16 ± 19.13 µg/l) was observed in winter and PO$_4^{3-}$ (36.10 ± 0.9 µg/l) in autumn. The highest value of PO$_4^{3-}$ in monsoon may be due to the autochthonous sources, as the value in the water of incoming canal is lower and similar to other seasons. This result is supported by Scheidt and Nichols (1976). The higher values of nitrate may be attributed to the oxidation of ammonia by nitrifying bacteria and biological nitrification (Seike et al. 1990, Abdo 2005) whereas the lower values may be related to the denitrification of nitrate-nitrogen by denitrifying bacteria (Merck 1980, Abdo 2005). The high concentration of dissolved inorganic nitrogen in the surface sediments result in diffusion of these nutrients into the overlying water (UNEP-IETC 1999). The algae can utilize inorganic nitrogen compounds such as nitrate, nitrite and ammonium as well as organic nitrogenous compounds like urea, uric acid and amino acids for their nitrogen needs (Agrawal 1999).
nitrates and phosphates in water. Agricultural runoff is considered as the most significant cause of nutrient enrichment in the reservoir. Experience from mainly deep stratified lake suggests that nitrogen Fig. 9. Variation of nutrients and productivity may limit growth and trigger dominance by nitrogen fixing cyanobacteria at low inorganic N, when the total nitrogen: total phosphorus (TN: TP) ratio declines below 10–20 (Smith 1983). In shallow, well-mixed, north temperate lakes, the pattern is less clear as green algae often dominate at high nutrient loading, despite TN : TP ratios well below 10 (Jensen et al. 1994). Nitrogen (N), while not considered the limiting nutrient in most cases for freshwater lakes, is nonetheless an essential nutrient for algal and rooted plant growth (Wetzel 2001).

The maximum gross primary productivity (GPP) of 0.40 mg C/l/hr and net primary productivity (NPP) of 0.23 mg C/l/hr were observed in monsoon. Similarly, the minimum value of GPP (0.11 mg C/l/hr) and NPP (0.06 mg C/l/hr) was found in autumn. The seasonal variation in present study is strongly correlated with the NO₃⁻ and PO₄³⁻. So the primary productivity in the reservoir seems to be determined by these nutrients.

It is a well-known phenomenon that the seasonal dynamics of nutrient availability in deep, stratified lakes differs profoundly from the general pattern observed in shallow lakes (Straskraba et al. 1993, Scheffer 1998). For shallow lakes, the intense sediment–water contact, as well as the increased mineralization rates resulting from the relatively high sediment temperatures, leads to an increased level of nutrients from the sediment (Jeppesen et al. 1991, Tuzun & Mason 1996, Beklioglu et al. 2003).

The reservoir was classified as Oligotrophic by Mc Eachern (1996) on the basis of TN and TP and also by DNWPC on the basis of chlorophyll-a content present in water in 2002. The nutrients level has increased several folds during the single decade which can be explained by the nutrient levels observed in the present study; according to which, the lake is eutrophic on the basis of transparency and total nitrogen. However, the abundant presence of phosphorus (orthophosphate in the present study) shows the hypereutrophic status of the reservoir.

The quality parameters of water showed productive nature of reservoir water as it witnessed excess growth of macrophytes. The trophic status of the lake was found to be hypereutrophic based on phosphate and eutrophic based on Sechi disk transparency and total nitrogen. Though the concentrations of general water parameters do not seem to pose any threat to the existing condition of the reservoir, the nutrients level which has already been increased by more than ten folds within a single decade is sure to degrade the condition of the reservoir soon in future. Some gestures of the threats can be observed in the form of plant productivity in water column or on the bottom substratum which is likely to be connected with the consequences of the agricultural runoff.

It looks quite necessary to carry out further studies in the reservoir focusing on the following components:

- Effects of agricultural runoff in changing the nutrient status of the reservoir and
- The growth and pattern of aquatic macrophytes with especial emphasis on the alien invasive species.

Acknowledgement

We are thankful to Prof. Dr. Umakan Ray Yadav, Head of Central Department of Environmental Science, T.U., Kirtipur, for providing lab facilities. We are also very much grateful to Asso. Prof. Paras M. Acharya and Mr. Naresh Rimal for their valuable guidance and support.

References

symposium organized by Ramsar Centre Japan (14-20 October 1992), Otusu-Kushiro, Japan.

