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ABSTRACT

For the fi rst time in South Asia, the model-based Lidar Assisted Multisource Program (LAMP) 
was tested in 23500 km2 TAL area of Nepal  by integrating 5% LiDAR sampling, wall-to-wall 
RapidEye satellite image and a representative fi eld inventory to estimate Above Ground 
Biomass(AGB) and carbon stock. The average 1.26/m2LiDAR point density recorded by the 
scanner was used to measure canopy height and build a model using LiDAR variables and 
model coeffi cients. The developed LAMP model successfully estimated the AGB of the study 
area. The research tells that the study area comprises almost 50% forest cover with an aver-
age 211.63 t/ha AGB.Standing carbon stock was converted from AGB by multiplying the 0.47 
which is default carbon fraction. Average standing carbon stock   is 99.47 t/ha in the study 
area. The LAMP method found that the standing total AGB was 214.85-208.41 t/ha at a 95% 
confi dence level and the FRA fi eld-plot AGB estimate is 210.09/ha. This correspondence at 
this level of confi dence means that the LAMP estimates are as accurate as those of the fi eld-
based inventory.
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INTRODUCTION

Tropical forests hold about 25% of the carbon in the terrestrial biosphere; emit 15-20 % of 
annual Greenhouse Gas (GHG) the second largest source of GHG emissions globally due to 
deforestation and forest degradation (FAO, 2010; IPCC, 2007; Kandel, 2013). Recognizing 
this prospect, the United Nations Framework Convention on Climate Change (UNFCCC) has 
set the REDD+ scheme for developing countries to reduce emissions from forested lands 
and invest in sustainable development by providing a fi nancial value for the amount of carbon 
stored in forests (Asneret et al., 2012; FAO, 2010). However, a successful REDD+ mechanism 
requires the transparent, complete, consistent, comparable, and accurate forest Monitoring, 
Reporting and Verifi cation (MRV) systems at national and sub-national scales ( IPCC, 2007; 
Gautam et al., 2010). 

Forest monitoring systems have changed in the course of time due to the continuous techno-
logical advancement (Gatziolis &  Andersen, 2008; Kandel, 2013; Næsset,1997). In the past, 
intensive fi eld-based FRA focused on timber production and applied for estimating tree volume, 
growing stock and growth (Hummel & O’Hara, 2008). Although traditional approach is accurate 
method, rigorous fi eld measurement is time-consuming costly, and diffi cult to implement in 
unreachable extensive forest areas.  
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Satellite RS has become an important instrument to collect large amounts of image data over 
a wide geographical area with high temporal frequency and provide 2D (x, y) information on 
species composition and distribution.  However, existing optical RS cannot provide an accurate 
estimate of forest biomass and sequestered carbon in the mapped area without an integrated 
forest inventory (Basanta et al., 2010).

In current years, airborne LiDAR (Light Detection and Ranging)  has become an essential part 
of operational forest inventory in Scandinavian countries (Næsset, 2007). Its high potential for 
REDD+ related biomass inventories has been well demonstrated (Asner et al., 2009;Gautam 
et al., 2010;Asner et al., 2012). Vegetation heights can be acquired with high accuracy using 
LiDAR height metrics. Since tree height is strongly correlated with tree volume, forest biomass 
can be predicted with high accuracy when regressing LiDAR metrics with data fromfi eld mea-
sured plots (Asner et al., 2010;  Arbonaut, 2010). But wall-to-wall covering of area of interest 
with LiDAR is expensive. When combining Lidar from sample areas with satellite data covering 
the entire area of interest and in-situ measurements at sample locations, high-resolution maps 
of forest carbon stocks and emission can be produced in an effi cient way (Kandel, 2013). The 
integrated approach is known as the LidarAssisted Multisource Program (LAMP) – a term that 
was coined by the World Wildlife Fund U.S. (WWF-US) and Arbonaut Ltd. in early 2011. LAMP 
has been tested and proved in Peru, Laos, Madagascar, Columbia and Tanzania. .    

In a joint effort of Arbonaut Ltd., Forest Resource Assessment Nepal (FRA) project and WWF 
implemented LAMP in subtropicalmountain landscape (Terai and Siwalik) of Nepal for moni-
toring AGB. 

MATERIALS AND METHODS

Study area

Covering an area of 23500 km2 theTerai Arc Landscape (TAL) issituated  along the foothills of 
the Himalayas in the southernmost part of Nepal, ranging from the lowlands of Terai region up 
to the southern slopes of the Himalayas in Siwaliks region (fi g.1). 

Altitude varies from 300 m in the South to 1500 m in the northern hills from above mean sea 
level. The area is a spatial mosaic of tropical and subtropical forest types, and covers 75% of 
the remaining forests of Terai and foot hills of Siwalik (HMGN/ MFSC, 2004). The dominating 
forest type is Sal (Shorea robusta) with smaller proportions of moist evergreen forest, dry 
deciduous forest, Khair-sisoo (Acacia catechu/-Dalbergia sissoo) and subtropical pine (Pinus-
roxburghii). 
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FIG.1. Map showing the study area in the Terai Arc Landscape.

LAMP method

The LAMP integrates LiDAR sampling, full coverage of satellite image and in-situ measure-
ment to calibrate LiDAR data. The data set includes: a set of ground-truth sample plots (fi eld 
plots) with tree-level measurements, LiDAR data for sample areas, and satellite data for the 
entire study area. In addition, a set of large random fi eld plots were collected from two LiDAR 
blocks for independent validation of the results. All input datasets and their pre-processing are 
introduced in the following sections.

LiDARdata acquisition and processing

Wall to wall LiDAR scanning was done in 5%representative forest area of the study area. LiDAR 
samples were designed by creating weighted vegetation map to represent the regional variation 
and vegetation types.  Probability proportional-to-size sampling was used to select the areas 
for LiDAR data collection. Total twenty blocks of each 5 km x 10 km size were considered over 
the area and   scanned by using the Leica ALS50-II- airborne LIDAR scanner from 2200 m 
average height during March and April 2011.

LiDAR raw data were classifi ed into three categories: ground returns, vegetation returns, and 
errors. This classifi cation was visually verifi ed. Further pre-processing included the calculation 
of a Digital Terrain Model (DTM) from the ground returns, the removal of overlaps from the raw 
data, and the conversion of height coordinates for vegetation returns from absolute elevation 
into distance-to-ground using the DTM. Average recorded point density was 1.26 pulses/m2.

LiDAR data were  processed by calculating LiDAR features following Junttila et al. (2010). 
These features are an extended and modifi ed version of those published by Næsset (2002). 
The features  included different height percentiles for the fi rst-pulse and last-pulse returns, 
mean height of fi rst-pulse returns above 5 m (high-vegetation returns), standard deviation 



for fi rst-pulse returns, ratio between fi rst-pulse returns from below 1 m and all fi rst-pulse re-
turns, ratio between last-pulse returns from below 1 m and all last-pulse returns, and several 
intensity-related features.

Field data collection 

The location of sample plots was designed using a systematic cluster sampling within blocks 
that were designed for LiDAR sample acquisition. Each designed LiDAR block contained six 
clusters of eight sample plots each (fi g. 2). The distance between cluster center was 3333 m 
in west-east and 2500 m in north-south direction. Within the clusters, the sample plots were 
aligned in two parallel columns in north-south direction, with 4 plots per column (fi g. 2). The 
distance between plots was 300 m in west-east direction, and 300 and 150 m in North-South 
direction in Terai and Siwaliks, respectively. The smaller North-South distance for Siwaliks was 
chosen because of the large variations in altitude in the mountainous region. The plots were of 

fi xed circular shape with a radius of 12.62 meters (500 sq.m). 

FIG. 2. Sampling design: LiDAR block with six clusters of eight fi eld plots each.

Highly accurate fi eld sample plots were located with sub-meter accuracy using a differential 
GPS with ProMark 3 and Mobile Mapper CX devices, and corrected in post-processing mode 
(GNSS Solutions software and Mobile Mapper Offi ce software). Total 792 forest located circular 
plots were measured in the fi eld and characteristics of 738 included for AGB estimation. The 
measurements at tree-level included all living trees and shrubs above 5cm diameter within 
the plot area. Plot volume and biomass were calculated using species-group specifi c volume 
and biomass equations prepared by Sharma & Pukkala (1990).

For each fi eld sample plot the following attributes were derived from the tree-level measure-
ments, by species group and totals: stem count (1/ha), mean diameter at breast height weighted 
by basal area (cm), basal area (m²/ha), mean tree height weighted by basal area (m), stem 
volume (m³/ha), and above-ground biomass (tons/ha). Mixed-effects models are an appropri-
ate tool for modeling the relationship between tree height and fi eld-measured tree diameter 
because the explanatory variables are clustered and spatially correlated (Eerikäinen, 2003). 
Stem volume was converted to stem biomass by applying wood density coeffi cients. Above-
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ground tree biomass was calculated by summing up the biomass of stem, foliage and branches. 
After computing the volume and Above Ground Biomass (AGB) for each tree, plot-level results 
were computed as aggregates of the tree-level results. Height and diameter were calculated 
as basal area weighted mean. Volume, basal area and AGB were calculated by summing the 
tree-level results and scaling them to hectare level by multiplying the sum by 1 ha/plot area. 
Finally, the fi eld plot data were screened for outliers.

Satellite Image 

High -resolution RapidEye satellite imagery of March-April 2010 and 2011 was used for wall-to-
wall mapping and biomass and carbon stock modeling.  These images have fi ve spectral bands 
ranging from blue to near-infrared (NI). The image has the ability to discriminate vegetation 
types and map forest conditions. Google Earth images such as Geo-eye, Worldview and Quick 
Bird were utilised for visual interpretation. The images used were  acquired in two different 
years. To accommodate these differences, relative calibrations were made. More specifi cally, 
a local radiometric calibration was done using the ArboLiDAR tool.

AGB estimation

The LAMP method follows a two-phase estimation approach. In the fi rst phase, forest vari-
ables related to biomass are estimated with high accuracy for LiDAR sample area by using 
LiDAR and fi eld inventory data.The fi eld plots were used as training data set for the fi rst-phase 
biomass estimation. In the second phase, AGB  estimates of  the LiDAR blocks through fi rst 
phase  approach were used as a simulated ground-truth (surrogate plots) in the interpretation 
of high-resolution satellite scenes for the entire study area (Gautam et al., 2010; Kandel, 2013 ).

In the fi rst phase of the LAMP approach, a regression model was generated based on the 
relationship between LiDAR height metrics and fi eld measurements. It has been shown that 
Sparse Bayesian methods offer a fl exible and robust tool for regressing LiDAR pulse histograms 
with forest parameters. While performing comparably to traditional regression methods, they 
are computationally more effi cient and allow better fl exibility than step-wise regression (Junttila 
et al., 2008;Junttila et al., 2010). Sparse-Bayesian regression is a non-parametric procedure 
where the set of suitable explanatory variables is selected from the given input data in order to 
reduce the complexity of the model and prevent over-fi tting. The regression model was applied 
to predict forest characteristics for a set of 10,000 circular-shaped “surrogate plots” (simulated 
fi eld plots) of 1-hectare size within the forested area of the LiDAR blocks. The locations of 
the surrogate plots were selected through weighted random sampling using the inverse of the 
block weights applied in LiDAR block sampling.

In the second phase, the forest characteristics estimated for the “surrogate plots” from LiDAR 
height data were applied as simulated ground-truth to generate a regression model between 
bio-physical forest parameters and features derived from satellite imagery. Again,  Sparse-
Bayesian method was used to regress satellite-derived variables with forest characteristics 
for the locations of the surrogate plots. The satellite-based variables were derived from the 
previously calculated textural variables and vegetation indices as zonal mean values for the 
area within each surrogate plot. Some particularly valuable satellite image features have been 
identifi ed from the analysis of Normalized Difference Fraction Index (NDFI).



The fi nal output includes stem count (1/ha), mean diameter at breast height weighted by basal 
area (cm), basal area (m²/ha), mean tree height weighted by basal area (m), stem volume (m³/
ha), above-ground biomass (tons/ha), and above-ground carbon (tons/ha).The above-ground 
carbon was calculated by using carbon fraction 0.47 of above-ground biomass (IPCC, 2006).

Assessing the Accuracy of LAM biomass estimates

In the study area, Forest Resource Assessment (FRA)  applied a stratifi ed two-phase systematic 
cluster sampling in 2011 to generate forest statistics. The fi eld based FRA estimates were com-
pared with LAMP estimates to validate the accuracy of LAMP. Confi dence limits of 95% were 
set for the biomass and volume estimates. Assessment of the accuracy of the LiDAR model 
at the plot level was carried out by calculating the error statistics of AGB estimates of LAMP.

RESULTS

AGB in TAL-Nepal

The AGB was calculated by using the LAMP model prepared for the study area.The result 
reveals that there is 1,154,279ha forest area which comprises about 51% of the total study 
area. The result also divulges that there is 235,706,921 t total AGB inthe forest area.  The 
quantity of biomass estimated was categorized under fi ve classes (table 1).

TABLE 1. Total AGB in TA-Nepal.

Biomass 
classes t/ha)

Area (ha) Total standing 
biomass (t)

Carbon sock
( t)

Average     
(t/ha)

Average 
carbon 
stock
(t/ha)

0.01-100 80,412.97 4,904,430.77 23,05,082.46 61 28.67
100.01-200 427,720.82 69,313,179.97 3,25,77,194.49 162 76.14
200.01-300 579,131.83 139,854,357.49 6,57,31,548.21 241.5 113.5
300.01-400 66,809.36 21,550,720.03 1,01,28,838.3 322.5 151.56
400.01-478 204.51 84,232.78 39,589.41 412 193.64
Total 1,154,279 235,706,921 11,07,82,252.87 211.63 

weighted 
99.47

weighted

Amount of standing volume depends upon area of forest, density of standing trees and their 
sizes.The highest amount (59%) of standing biomass is under the third biomass class (200.01-
300 t/ha)which class  covers about 50% forest area. The small amount of AGB (84,232.78 
t) is under the last biomass class (400.01-478 t/ha) which comprises only 204.51 ha forest 
area. The trend shows that average AGB is gradually increasing with increasing the biomass 
classes. The average weighted standing total AGB (living and dead) is 211.63 t/ha.Figure 3 
presents the extent of AGB map under fi ve biomass classes.
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FIG. 3. Map of TAL-Nepal showing extent of AGB under fi ve categories. 

Assessing and validating the accuracy of LAMP model biomass estimates

Total biomass results at a 95% confi dence level.

Table 2 presents the LAMP model-estimated mean values of several variables, including bio-
mass at a 95% confi dence level. Data collected using FRA processes were utilized to compare 
and validate these results. 

TABLE 2. LAMP results at a 95% confi dence level and comparison with FRA results.

Variable (mean/ha) LAMP (mean/
ha)

 LAMP (range) FRA (mean/
ha)

Standing total basal area (m2/ha) 18.51 ± 0.24 18.75-18.27 18.96

Basal area (m2/ha) of living trees 18.30± 0.23 18.53-18.07 18.16

Standing total volume (m3/ha) 167.89 ± 2.57 170.46- 165.32 172.60

Volume (m3/ha) living trees 164.76 ± 2.54 167.30-162.22 170.2

Standing total  AGB (t/ha) 211.63 ± 3.22 214.85-208.41 210.09

Living AGB (t/ha), living trees 208.38± 3.17 211.55-205.21 209.5



The intention behind calculating the confi dence levels of LAMP results and comparing them 
with FRA results is to test the reliability and validity of those results. The LAMP method found 
that the standing total AGB was 214.85-208.41 t/ha at a 95% confi dence level and the FRA 
fi eld-plot estimate of 210.09/ha (table 2 ). The LAMPmean living AGB estimates lies between 
211.55 to 205.21t/ha at a 95% confi dence level which is validated by the FRA fi eld-plot estimate.  
The FRA fi eld plot mean Living AGB estimate is 209.5 t/ha which is accurate enough to the 
value (208.38 t/ha) of LAM estimate. This correspondence at this level of confi dence means 
that the LAMP estimates are as accurate as those of the fi eld-based inventory.

Error statistics of the AGB estimates of LAMP

Sampling or estimation error is the degree of inaccuracy in estimating values of inventoried 
variables that is caused by measuring only a portion of a population (i.e. a sample) rather 
than the whole population. In this case, the sampling error is caused by inaccuracies in the 
estimations of volume and biomass.

TABLE 3. Error statistics of the AGB estimates of LAMP.

Parameter Value

Mean living AGB of LAMP estimate (t/ha) 207.23

SD of LAMP  estimate (t/ha) 25.06

Mean of FRA reference plots estimates  (t/ha) 209.93

SD of FRA  reference plots estimate (t/ha) 60.64

RMSE 53.42

Relative RMSE (%) 24.5

Bias -2.69

Relative bias (%) -0.013

Statistical signifi cance of bias (P) 0.83

Table 3 shows the per-hectare level error statistics of the AGB estimates of LAMP. The Root 
Mean Square Error (RMSE) is a measure of the difference between values predicted by a 
model or an estimator and the values actually observed. The smaller a RMSE is the higher is 
the accuracy of the model in question. RMSE depends on what is achievable given the data 
that is being modelled. In this case, the RMSE of LAMP model estimate was 53.42. The LAMP 
result was also validated by comparing it to the fi eld-based FRA estimates; in fact, the SD of 
the LAMP estimate (25.06 t/ha) is less than that of the FRA estimate (60.64t/ha). It means that 
lAMP method is accurate enough to estimate AGB.
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Correlation between AGB estimates using fi eld data and LAMP model estimates

Figure 4 reveals the square of the correlation between the total AGB calculated using actual 
data measured in the fi eld (x-axis) and the LAMP model estimate (y-axis). The result shows 
that R2= 0.616, which means the association is suffi ciently high between model-estimated AGB 
and the primary fi eld data-based AGB.

FIG. 4. Correlation between estimated AGB and fi eld data AGB.

The squared correlation gives the variance of the predicted responses as the fraction of the 
variance of the actual responses(Moore & McCabe, 1998). In this case  LAMP model estimated 
AGB is the predicted value and AGB calculated by fi eld data is the actual response.   

DISCUSSION

This research was carried out to estimate and map of AGB in TAL-Nepal by using model based 
LiDAR assisted forest inventory approach, and assess and validate the accuracy of LAMP 
model biomass estimates.

The average 1.26/m2LiDAR point density recorded by the scanner was used to measure 
canopy height and build a LAMP model using LiDAR variables and model coeffi cients. This 
model successfully estimated the AGB of the study area.The research reveals that the study 
area comprises almost 50% forest cover with an average 211.63 t/ha AGB. Standing carbon 
stock was converted from AGB by multiplying 0.47 which is the default carbon fraction. Aver-
age standing carbon stock   is 99.47 t/ha in the study area.

The LAMP-estimated AGB was validated with the FRA mean values of AGB from the same 
area, which lie within the 95% confi dence interval of LAMP estimates. Thus, it can be said 
that LAMP estimates are as precise as those of a design-based fi eld inventory.The square 
of the correlation between the total AGB was calculated using actual data measured in the 
fi eld (x-axis) and the LAMP model estimate (y-axis). The result shows that R2  = 0.616, which 
means the association is suffi ciently high between model-estimated AGB and the primary fi eld 



data-based AGB. This study concludes that the LAMP approach is reliable and accurate to 
estimate AGB and carbon stock.
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