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Abstract 

	 Modeling		and	forecasting	volatility	of	capital	markets	has	been	important	area	of	inquiry	and	

research in financial economics with the recognition of time-varying volatility, volatility clusturing, and 

asymmetric response of volatility to market movements. Given the anticipated growth of the Nepalese 

stock market and increasing interest of investors towards investment in Nepalese stock market, it 

is important to understand the pattern of stock market volatility.  In the paper, the volatility of the 

Nepalese stock market is modeled using  daily return series consisting of 1297 observations from 

July 2003 to Feb 2009 and different classes of estimators and volatility models. The results indicate 

that the most appropriate model for volatility modeling in Nepalese market, where no significant 

asymmetry in the conditional volatility of returns was captured,  is GARCH(1,1). The study revealed 

strong evidence of time-varying volatility, a tendency of the periods of high and low volatility to 

cluster and a high persistence and predictability of volatility in the Nepalese stock market. 

Key words : Conditional heteroskedasticity, ARCH, GARCH, volatility clustering, leverage 

effect, Nepalese Stock Market

Introduction

Stock prices volatility has received a great attention from both academicians 

and practitioners over the last two decades because it can be used as a measure of risk in 

financial markets. Over recent years, there has been a growth in interest in the modelling of 

time-varying stock return volatility. Many economic models assume that the variance, as a 

measure of uncertainty, is constant through time. However, empirical evidence rejects this 

assumption. Economic time series have been found to exhibit periods of unusually large 

volatility followed by periods of relative tranquility (Engle, 1982). In such circumstances, 

the assumption of constant variance (homoskedasticity) is inappropriate (Nelson,1991). 

The time series are found to depend on their own past value (autoregressive), depend on 

past information (conditional) and exhibit non-constant variance (heteroskedasticity). It has 

been found that the stock market volatility changes with time (i.e., it is “time-varying”) and 

also exhibits positive serial correlation or “volatility clustering”. Large changes tend to be 

followed by large changes and small changes tend to be followed by small changes, which 

mean that volatility clustering is observed in financial returns data. This implies that the 
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changes are non-random. When volatility clusters, the random walk hypothesis is refuted 

(Mandelbrot, 1963). 

Moreover, the volatility of returns can be characterized as a long-memory process 

as it tends to persist. the technical term given to this behavior is autoregressive conditional 

heteroskedasticity (ARCH). In a seminal paper, Engle (1982), for the first time, proposed to 

model time-varying conditional variance with the ARCH process that uses past disturbances 

to model the variances of the series and allows the variance of the error term to vary over 

time. Bollerslev (1986) generalized the ARCH process by allowing the conditional variance 

to be a function of prior period’s squared errors as well as its past conditional variances. 

Following the introduction of models of ARCH by Engle (1982) and their generalization 

by Bollerslev (1986), there have been numerous refinements of the approach to modelling 

conditional volatility to better capture the stylized characteristics of the data. Empirically, 

the family of GARCH (generalized ARCH) models has been very successful in describing 

the financial data. ARCH and GARCH models treat heteroskedasticity as a variance to be 

modeled. Of these models, the GARCH (1, 1) is often considered by most investigators to 

be an excellent model for estimating conditional volatility for a wide range of financial data 

(Bollerslev, Ray and Kenneth, 1992).

Financial time series often exhibit leptokurtosis, which means that the distribution 

of their returns is fat-tailed (i.e. relative high probability for extreme values) Mandelbrot 

(1963), Fama (1965), Laurent and Peters (2002). Moreover, changes in stock prices tend 

to be negatively correlated with changes in volatility. In financial data, the asymmetry is 

usually, such that negative shocks cause higher volatility in the near future than the positive 

shocks, which is called “leverage effect” (Black, 1976; Nelson, 1991). Though, in most 

of the cases, the ARCH and GARCH models are apparently successful in estimating and 

forecasting the volatility of the financial time series data, they cannot capture some of the 

important features of the data. The most interesting feature not addressed by these models 

is the “leverage effect” where the conditional variance tends to respond asymmetrically to 

positive and negative shocks in returns. They fail to capture the fat-tail property of financial 

data. This has lead to the use of non-normal distributions (Student-t , Generalized Error 

Distribution and Skewed Student-t ), within many nonlinear extensions of the GARCH model 

which have been proposed. Such as the Exponential GARCH (EGARCH) of Nelson (1991) 

the so-called GJR model of Glosten, Jagannathan, and Runkle (1993) and the Asymmetric 

Power ARCH (APARCH) of Ding, Granger, and Engle (1993), to better model the fat-tailed 

(the excess kurtosis), skewness and leverage effect characteristics . 

Although, recently, a few studies on stock market volatility using ARCH family 

models have been carried out on emerging markets including India (Karmakar, 2005, Pandey, 
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2005), surprisingly enough, there have been quite a few studies focusing on small capital 

markets. The focus of the study is to model conditional volatility in an effort to capture 

the salient features of stock market volatility and investigate whether there is any leverage 

effect in the Nepalese capital market.  

Data and Review of Volatility Models

The data set comprises of the daily NEPSE Index  return from 17th July, 2003 to 

11th Feb, 2009 with a total number of observations of 1297. The data covers the periods of 

varying volatility patterns observed in the Nepalese market. The daily return series will be 

generated as follows:

R
SI,t

 = (100) * (log (R
SI,t

 - R
SI,t-1

))   …   …   …   (i)

Where R
SI,t

  represents the closing value of the stock index on the day t. The return 

series is therefore continuously compounded daily returns expressed as a percentage. 

Under the ARCH model, the ‘autocorrelation in volatility’ is modeled by first estimating 

the conditional mean and variance. A time series for index R
t
 can be thought of as the sum 

of a predictable and an unpredictable component: 

Rt = E (Rt | Rt-1 ) + ut   ...   ...   ...   (ii)
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Under the ARCH model the ‘autocorrelation in volatility’ is modeled by allowing 

the conditional variance of the error term, σ 2   to depend on the immediately previous value 

of the squared error:

σ
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    ...   ...   ...   (iv)

The above model is known as ARCH(1), since the conditional variance depends 

on only one lagged squared error term. The model can be extended to the general case 

where the error variance depends on q lags of squared errors, which would be known as an 

ARCH(q) model:
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The appropriate lag length ‘q’ is determined by using AIC and SIC. The GARCH 

model allows the conditional variance to be dependent upon previous own lags, so that the 

conditional variance equation in the simplest case is :
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   ...   ...   ...   (vi)

This is the GARCH(1,1) model, 2
tσ is known as the conditional variance since it is a 

one-period ahead estimate for the variance calculated based on any past information thought 

relevant.  The GARCH is more parsimonious and avoids data over-fitting as compared to 

ARCH. The GARCH (1,1) model can be extended to a GARCH(p,q) formulation, where 
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the current conditional variance is parameterized to depend upon q lags of the squared error 

and p lags of the conditional variance

 ∑ ∑
= =

−+−+=
q

t

p

j
jtjituit

1 1

22
0

2 σβαασ      ...   ...   ...   (vii)

One of the primary restrictions of GARCH models is that they enforce a symmetric 

response of volatility to positive and negative shocks. However, it has been argued that a 

negative shock to financial time series is likely to cause volatility to rise by more than a 

positive shock of the same magnitude. A term referred to as leverage effect. The study will 

use two popular asymmetric GARCH models to test for the presence of  leverage effect 

in Nepalese data: the GJR model and the exponential GARCH (EGARCH) model. The 

GJR model or Threshold GARCH (TGARCH) is a simple extension of GARCH with an 

additional term added to account for possible asymmetries (Knight and Satchell, 2003). The 

conditional variance is now given by:
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Where
  
I

t-1
 = 1 if u

t-1
 <0 or zero otherwise. For a leverage effect, we would see γ>0.  

The EGARCH model expresses the conditional variance as follows (Brooks, 2004): 
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Asymmetries are allowed for under the EGARCH model, since if the relationship 

between the volatility and returns is negative, 1β  will be negative. 

Descriptive Statistics of Nepse Return Series

The index has a large difference between its maximum and minimum returns. 

The standard deviation is also high indicating a high level of fluctuations of the NEPSE 

daily return. There is also evidence of negative skewness, which means that the left tail is 

particularly extreme, and indication that the NEPSE has non-symmetric returns. NEPSE’s 

returns are leptokurtic or fat-tailed, given its large kurtosis. 

Figure 1: Descriptive Statistics of NEPSE Index Return Series
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The negative skewness implies that the return distributions of the shares traded 

in our markets have a higher probability of earning negative returns. The market average 

effective annual return for the study period is 15.27 percentage. The historical equity risk 

premium is  around 10 percent. The Jarque-Bera test rejects the null hypothesis of normality 

providing the evidence that the return series is not normally distributed. 

Volatility Clusturing and Modelling Volatility

 Figure 2 exhibits the return series of the NEPSE Index for the period 17th July, 

2003 to 11th Feb, 2009. There are stretches of time where the volatility is relatively high 

and relatively low which suggests an apparent volatility clusturing in some periods. 

Statistically, volatility clusturing implies a strong autocorrelation in returns. Volatility 

clusturing describes the tendency of large changes in assets prices (of either sign) to follow 

large changes and vice versa. In other words, the current level of volatility tends to be 

positively correlated with its level during the immediately preceding periods.

Figure  2: Volaltility Clusturing of Daily Returns of NEPSE Index

 

	 The above figure shows that the volatility in Nepalese market has increased in 

recent periods. There appears to have been a prolonged period of relative tranquility in 

the market during the early study period, evidenced by only relatively small positive and 

negative returns. The series exhibits volatility clusturing and time-varying characteristics 

of volatility. The last two columns reported in the correlogram shown in Appendix II are 

the Ljung-Box Q-statistics and their p-values. The Q-statistic at lag k is a test statistic for 

the null hypothesis that there is no autocorrelation up to order k. (lag length). The values 

of Q statistics, ACF and PACF suggest the presence of autocorrelation and hence volatility 

clusturing in return series of the NEPSE index.  We can observe that the index shows 

evidence of ARCH effects judging from the significant autocorrelation coefficients. The 

autocorrelation in the series dies out after 28 lags. The characteristics of the NEPSE return 

series are consistent with other financial times series. To sum up, the analysis indicates that 

the daily return series of the index is non-normal and exhibits ‘ARCH effect’.
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The ARCH(4), GARCH (1,1), EGARCH(1,1), TGARCH(1,1) models are estimated 

for the NEPSE returns series to choose the volatility model that best models the conditional 

volatility of the return series. A test for the presence of ARCH in the residuals is calculated 

by regressing the squared residuals on a constant and p lags. The correct number of lags in 

the model have been selected using AIC and SIC information criterion. The test can also be 

thought of as a test for autocorrelation in the squared residuals. 

Table 1: Model Output of ARCH(4) Test

No of Lags in the Model

Constant 1 2 3 4

Coefficients 2.97E-06* 0.406* 0.690* 0.0567* 0.107*

F-Statistic                  35.2323*  AIC  -8.500
Log-likelihood  5511.039

* Significant at 1% level of significance

Both the F-statistic and the LM-statistic are very significant, suggesting the presence 

of ARCH in the NEPSE index returns. The non-negativity constraints of the coefficients have 

not been violated. ARCH models provide a framework for the analysis and development of 

time series models of volatility. However, most recent empirical studies use GARCH model 

than ARCH as it is more parsimonious and avoids overfitting. 

Table 2:   Estimated Volatility Models

Models RW GARCH TGARCH EGARCH PARCH

Mean Equation

μ 0.0002** 7.32E-05 0.00011** 3.16E-05 0.0001*

α
0.37* 0.3298* 0.327* 0.344* 0.359

Variance Equation

α
0

- 1.06E-06* 1.02E-06* -1.75* 0.0007**

α
1

- 0.417* 0.605* 0.882* 0.336**

β
1

- 0.55* 0.563* 0.051* -0.081**

γ - - -0.0131** 0.619* 0.681*

θ - - - - 0.860*

Adj R2 0.14 0.135 0.138 0.1381 0.14

F-statistic 213.59* 51.63* 41.41* 41.41* 35.22*

Jarque-Bera 3238 4301 4016 3015 3673
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AIC -7.98 -8.487 -8.48 -8.514 -8.51

LL 5174 5500 5502 5519 5519

No of Obs. 1297 1297 1297 1297 1297

* and ** indicates that the coefficient values are significant at 1% and 5% level of significance 

respectively.

Results and Discussion

 The results of estimation and statistical verification of the RW, GARCH(1,1), 

TGARCH(1,1), EGARCH(1,1) and PARCH(1,1) models are shown in Table 2. The 

AR1(α) parameters in the mean equation are significant in all estimated models except 

the PARCH model. The ARCH (α
1
)	and GARCH (β

1
) terms are positive and significant in 

all estimations. The sum of ARCH and GARCH coefficients (α + β) is very close to one, 

indicating that the volatility shock are very persistent. It is an indication of a convariance 

stationary model with a high degree of persistence; and long memory in the conditional 

variance. 

 The parameter estimates of all the GARCH models in table 2 show that the 

coefficients of th conditional variance equation, α
1
 and β

1
 are significant at one percent 

level of significance implying a strong support for the presence of ARCH and GARCH 

effects. Also, as is typical of GARCH model estimates for financial asset returns data, the 

sum of the coefficients  is very close to unity. This implies that shocks to the conditional 

variance will be highly persistent. It implies that a large positive or negative return will lead 

future forecasts of the variance to be high for a protracted period. In GARCH(1,1) model, 

α + β = 0.967 is also an estimation of the rate at which the response function declays on 

daily basis. Since the rate is high, the response function to shock is likely to die slowly. 

It means new shocks will have influence in returns for a longer period. In such markets 

old information effect on securities prices decays very slowly. The findings is consitent 

with Magnus and Fosu (2006). For TGARCH models the persistence in volatility is very 

long and explosive suggestive of an integrated process. The asymmetric (leverage) effect 

captured by the parameter estimate γ which is less than zero suggesting absence of leverage 

effect. The asymmetry term β
1
 for EGARCH model is positive which also indicates absence 

of leverage effect. The absence of asymmetry or leverage effect is further supported by the 

output of the PARCH model.

 The results of diagnostic tests show that the GARCH models are correctly specified. 

Overall, using the minimum AIC, maximum LL values as model selection criteria, the 

GARCH (1,1) is the preferred model. The absence of leverage or asymmetric effects 
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indicates that the GARCH(1,1) model best models the volatility of the NEPSE return 

series. 

Conclusions

 The study found the distribution of the daily return series for the Nepalese stock 

market to be leptokurtic,  non-normal and exhibiting significant time dependencies. The 

conditional volatility of the NEPSE return series was modeled using a random walk model, a 

non-linear GARCH(1,1) model and threee asymmetric models GJR model, EGARCH(1,1) 

and PARCH(1,1). The study found that the NEPSE Index return series exhibits stylized 

characteristics as supported by empirical evidence in different studies such as volatility 

clusturing, time-varying conditional heteroskedasticity, and leptokurtosis. However, the 

asymmetric leverage effect as evidenced on various studies in advanced stock markets 

was not detected in NEPSE index return series. The GARCH(1,1) was found to be the 

appropriate model for volatility forecasting in Nepalese stock market. The parameter 

estimates of the GARCH models suggest a high degree of persistence in conditional 

volatility of stock returns. The evidence of high volatility persistence and long memory in 

the GARCH process indicate that integrated GARCH model might be a better model for 

volatility analysis of the NEPSE data series. The study revealed strong evidence of time-

varying volatility, a tendency of the periods of high and low volatility to cluster and a high 

persistence and predictability of volatility in the Nepalese stock market.
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Appendix I: Movement in NEPSE Index from July 2003 to Feb 2009

Appendix II: Autocorrelation of Daily NEPSE Return

Lag AC  PAC  Q-Stat  Prob

1 0.377 0.377 184.15 0.000

2 0.031 -0.129 185.41 0.000

3 -0.051 -0.019 188.80 0.000

4 0.007 0.046 188.86 0.000

5 0.037 0.015 190.68 0.000

10 0.098 0.055 211.80 0.000

15 0.016 -0.014 238.78 0.000

20 0.049 0.040 245.28 0.000

25 0.009 -0.018 268.48 0.000

28 -0.001 0.015 270.33 0.000

29 0.000 -0.019 270.33 0.000


