
214

Polynomials and Taylor’s Approximations 

Nhuchhe Shova Tuladhar 

 Department of Science and Humanities, Pulchowk Campus, Institute of Engineering 

 Tribhuvan University, Kathmandu, Nepal 

Corresponding author: nhuchhet@gmail.com 

Received: Dec. 5, 2015           Revised: April 15, 2016         Accepted: Aug. 25, 2016 

 

Abstracts: The main objective of this article is to make a formal description of 
the polynomial, polynomial equations with definitions and their properties. 
Besides studying some of its uses in real life situations, we shall discuss 
polynomial approximation   using higher order derivatives. 
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1.  Introduction 

In mathematics, a polynomial is the simplest class of mathematical expression constructed from 
variables (called indeterminate) and constants using the operations of addition, subtraction, 
multiplication and non-negative integer exponents, [10, 12].  Polynomial comes from the Greek 
poly, "many" and Latin binomium, "binomial". Polynomials appear in a wide variety of areas of 
mathematics and science. For example, they are used to form polynomial equations, which 
encode a wide range of problems, from elementary word problems to complicated problems in 
the sciences; they are used to define polynomial functions, which appear in settings ranging 
from basic chemistry and physics to economics and social science; they are used in calculus and 
numerical analysis to approximate other functions. In advanced mathematics, polynomials are 
used to construct polynomial rings and algebraic varieties, central concepts in algebra and 
algebraic geometry [3, 6, 7].   

2.  Polynomial Functions 

A function  F of one argument is called a polynomial function if it satisfies   

F (x) = Anx
n + An−1x

n−1 + An−2x
n−2 + … + A1x + A0, 

for all arguments x, where n is a non-negative integer and the coefficients  A0, A1,A2, ..., An are 
constants and An  ≠ 0. Polynomials of degree zero, one, two, three, four and five are respectively 
called constant polynomials, linear polynomials, quadratic polynomials, cubic polynomials, 
quadratic polynomials and quintic polynomials. Polynomial functions are continuous, smooth, 
entire, computable, etc. A one-term polynomial is called a monomial; a two-term polynomial is 
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A function  F of one argument is called a polynomial function if it satisfies   

F (x) = Anx
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for all arguments x, where n is a non-negative integer and the coefficients  A0, A1,A2, ..., An are 
constants and An  ≠ 0. Polynomials of degree zero, one, two, three, four and five are respectively 
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quadratic polynomials and quintic polynomials. Polynomial functions are continuous, smooth, 
entire, computable, etc. A one-term polynomial is called a monomial; a two-term polynomial is 

called a binomial, and so on. A polynomial in one variable is called a univariate, a polynomial in 
more than one variables is called a multivariate polynomial.  

All polynomials with coefficients in a unique factorization domain is written as a product of 
irreducible polynomials and a constant. This factored form is unique up to the order of the 
factors. The graphs of polynomial functions are continuous and have no sharp corners. The sign 
of the leading coefficient determines the end behavior of the function. The  degree n determines 
the number of complex zeros of the function. The number of real  zeros of the function will be 
less than or equal to the number of complex zeros. The real zeros of a polynomial function may 
be found by factoring (where possible) or by finding the intersection with the x-axis. The number 
of times a zero occurs is called its multiplicity. If a function has a zero of odd multiplicity, the 
graph of the function crosses the x-axis at that x-value. However, if a function has a zero of even 
multiplicity, the graph of the function only touches the x-axis at that x-value. 

Formulae for expressing the roots of polynomials of degree 2 in terms of square roots have been 
known since ancient times. Several workers like Niccolo Fontana Tartaglia, Lodovico Ferrari, 
Gerolamo Cardano, Vieta etc have made their significant contributions in the 16th century  to 
develop formulae  for the cubic and quartic polynomials. In 1824, Niels Henrik Abel proved the 
striking result involving only arithmetic operations and radicals that expresses the roots of a 
polynomial of degree 5 or greater in terms of its coefficients (see Abel-Ruffini theorem). In 1830, 
Évariste Galois, studied the permutations of the roots of a polynomial, extended the Abel-Ruffini 
theorem. This result marked the establishment of Galois Theory and Group theory, two important 
branches of modern mathematics [2, 3, 4, 10, 12]. 

3. Fundamental Properties of Polynomials 

The complex structure of polynomial functions makes them useful in analyzing using polynomial 
approximations. In calculus, Taylor's theorem states that every differentiable function locally 
looks like a polynomial function, and the Stone-Weierstrass theorem, which states that every 
continuous function defined on a compact interval of the real axis can be approximated on the 
whole interval as closely as desired by a polynomial function.  

Based on the notion of zeros of a polynomial, we get the following properties of rational integral 
domain, [3, 8, 10, 12]. 

i.     The set D[x] of all polynomials in x over an integral domain D is an integral domain.  

ii.     (Continuity of Polynomial Function):  

  Every polynomial function F:  → 		defined by  

F(x) = Anx
n + An−1x

n−1 + An−2x
n−2 + … + A1x + A0, 

 where A1, A2, …, An  being real, is continuous on R. 

 iii.    If F and G are polynomials and G , then the rational function  h :   → 	 defined by h = 

F

 G  is continuous on R  except at points for which G = 0. 
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iv. Division Algorithm:  

For any non–zero polynomials  F(x) and  G(x) over a field K and G (x) ≠ 0, there exist 
unique polynomials S(x) and R(x) such that 

F (x) = G (x) S(x) + R(x), 

 where R(x) is zero or of degree less than that of   G(x). 

v. Remainder Theorem:  

The value of polynomial F (x) at x = c equals the remainder obtained on dividing F (x) by x 
− c. 

 In other words, if a  polynomial  F (x) is divided by a linear polynomial x – c, then the 
remainder is F(c). 

vi. Factor Theorem:  

The linear polynomial x − c is a factor of a polynomial F (x) if and only if F (c) is zero. 

 In other words, if a polynomial F (x) is divided by the linear polynomial x – c and 
remainder R(c) = 0, then x  – c is a factor of  F(x). 

vii. Fundamental Theorem of Algebra: 

Every polynomial with complex coefficients (over a field of complex numbers) of degree ≥ 
1, has at least one root in C. In fact, a polynomial F (x) over a field of complex numbers C, 
of degree n has exactly n zeros in C. 

  If the leading coefficient an in a polynomial of degree n, then there exist complex numbers 

c1, c2, …, cn such that 

F(x)  = An(x − c1) (x − c2) … (x − cn). 

viii. Rolle's Theorem:  

If F (x) is a polynomial over the field of real numbers R, and if a and b are real number 
with F (a) and F (b) having opposite signs, one positive and other negative, then F (x) has a 
real zero between a and b. 

Polynomial equations are used in a wide variety of areas of mathematics and science. It appears 
in basic chemistry, physics, economics and social sciences. It is used in calculus and numerical 
analysis to approximate other functions. In advanced mathematics, polynomials are used to 
construct polynomial rings, a central concept in algebra and algebraic geometry. Polynomials are 
frequently used to encode information about some other object. The characteristic polynomial of 
a matrix or linear operator contains information about the operator's eigenvalues. The chromatic 
polynomial of a graph counts the number of proper colorings of that graph. 

4. Polynomial Equations 

A polynomial equation, also called an algebraic equation is of the form  

An x
n + An−1 x

n−1 + An−2 x
n−2 +… + A1x + A0  = 0. 
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4. Polynomial Equations 

A polynomial equation, also called an algebraic equation is of the form  

An x
n + An−1 x

n−1 + An−2 x
n−2 +… + A1x + A0  = 0. 

A polynomial identity is a polynomial equation for which all possible values of the unknown are 
the solutions.. 

In elementary algebra, quadratic formula are given for solving all second degree polynomial 
equations in one variable. There are also formulae  for the cubic and quartic equations. For 
higher degrees, Abel–Ruffini theorem asserts that there can not exist a general formula,  only 
numerical approximations of the roots may be computed. The number of solutions may not 
exceed the degree when the complex solutions are counted with their multiplicity. This fact is 
called the fundamental theorem of algebra. 

For a set of polynomial equations in several unknowns, there are algorithms to decide if they 
have a finite number of complex solutions. It has been shown by Richard Birkeland and Karl 
Meyr that the roots of any polynomial may be expressed in terms of multivariate hypergeometric 
functions. Ferdinand von Lindemann and Hiroshi Umemura showed that the roots may also be 
expressed in terms of Siegel modular functions, generalizations of the theta functions that appear 
in the theory of elliptic functions. We now state some of the fundamental properties of the 
polynomial equations, [2, 3, 4, 10,12]. 

i.   Every equation of degree n has exactly n roots. 

ii.  In every equation with real coefficients, imaginary roots occur in conjugate pairs.  

       In other words, if a + ib is  one of the roots, then a – ib is other root. 

iii.  In every equation surd roots occur in conjugate pairs. From this result, it follows that if 

a + b is one  of the roots, then  a – b is also a root. 

iv.   For any two real numbers a and b, if F (a) and F(b) have opposite  signs, then the 

equation F (x) = 0  has  at   least one root between a and b.         

Consider,  F (x) = x2 – x – 2 = 0, then F(0) = –2 < 0 and  F(3)  = 4 > 0. 

So F (0) and F(3) have opposite signs. Hence   it has at least one root between 0 and 3. 

A simple calculation shows that there is a root 2 between 0 and 3. 

v.   Every equation of an odd degree has at least one real root whose sign is opposite to that 

of its absolute term.   

Consider F(x) = x3 – 4x
2 + x + 6 = 0. Then F (– 2) = – 20 < 0 and F (0) = 6 > 0  

i.e. F (–2) and F (0) have opposite signs. So there should be at least one root between –2 
and 0.  

  Moreover absolute term is positive, so one root must be negative. A simple calculation 
shows that there is a negative root –1 among the roots –1, 2 and 3. 

vi.  Every equation of an even degree, whose absolute term is negative has at least two real 

roots, one positive and one negative. 

Consider an equation   F (x) = x2 + x –12 = 0, which is of even degree with negative 
absolute term.  

          It has two real roots one positive and other negative namely x = – 3 and x = 4. 
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         Similarly, for  F(x) = x4 + 2x
3 – 4x

2– 5x – 6 = 0, which is an even degree with negative 
absolute term.  

           It has two real roots –2 and 3 and other two imaginary roots. 

vii.    An equation F(x) = 0 cannot have more positive roots than the number of changes of sign 

in F (x)  

            (from + to − or from − to +) and cannot have more negative roots than there are changes 

of sign in F (−x). 

This rule is known as Descartes' Rules of Signs and helps us to determine the nature of 
some of the roots without actually determining them i.e., without solving the equation. 

 Consider  F (x) = x3 – 2x
2  – 5x + 6 = 0.  Here, the signs of the terms of F (x) are  

+      –         –        +. 

 So the number of changes in signs in F (x) = 2 and hence the number of positive roots 
cannot be greater than 2. Replacing x by – x, then   

F (–x) = – x3 – 2x
2 + 5x + 6. 

 So that the signs of the terms are   –      –      +      + . Hence the number of changes of 
sign in F (–x) is 1. 

  So there must be only one negative root of F (x) = 0. In fact, there are three roots namely 
1, –2 and 3.  

5.   Approximation of Polynomials 

Many functions  like  ex 2, sin x , cos (ex 2) etc are  much more difficult to work with than linear  
polynomial of the form mx +  b, and so many times it is useful to approximate such complicated 
expressions by a linear function of the form  f (x) =  mx +  b. Because of simplicity in form and 
applicability of well–known algebraical and analytical operational rules, polynomials are often 
used for such purposes, [1, 9, 11, 13]. For a small interval of x values, differential calculus 
focuses on the construction and use of tangent lines at various values of x. By using higher 
derivatives, the idea of a tangent line can be extended to the idea of polynomials of higher degree 
which are “tangent” in some sense to a given curve. This is accomplished by using a polynomial 
of high degree, and or narrowing the domain over which the polynomial has to approximate the 
function, see [5, 11, 13,14]. Narrowing the domain can often be done through the use of various 
addition or scaling formulas for the function being approximated.     

Using the notion of a derivative, we approximate a real valued function p differentiable in an 
open interval (a, b) and continuous in the closed interval [a, b], by a linear function or first–
degree Taylor’s polynomial F1 defined by 

F1(x) =   p(r) + p '(r) (x – r), r � [a, b]  

for x ‘close’ to r. 
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The graph of this approximating polynomial for p is the tangent line 

y = p(r) + p'(r) (x – r)  at x = r. 

 

 

 

 

 

 

 

 

Fig. 1: Approximating polynomial for p 

For a function p which is twice differentiable in (a, b) and whose first derivative is continuous in 
[a, b], then  

its Taylor’s  second approximation F2(x) can be obtained in the form 

F2(x) = p (r) + p '(r) (x– r)  + 
1

 2!   p"(r) (x – r)2, r ∈[a, b]  

for x ‘close’ to r. 

Interpreted geometrically, it means 

i.    F2 (x) = p (r), i.e., F2(x) has the same value at r as p. 

ii.   F '2 (x) = p '(r)  +  p"(r) (x – r) , i.e., F '2(r)  =  p '(r)  

          i.e., the slope of the tangent line to F2 at r is the same as the slope of the tangent line to p at 
r. 

iii.    F "2 (x) = p "(r), F "2 (r) = p"(r)  

         i.e., the second derivative of F2 at x is the same as that of p at r.        

iv.    If we further assume that   p  is 3–times differentiable in the open interval (a, b) and p  has 
continuous second derivative in the closed interval [a, b], we shall have an Taylor’s 
approximation F3(x) of p in the form 

F3(x) = p (r) + p '(r) (x – r) + 
1

 2!   p"(r) (x – r)2 + 
1

 3!   p"'(r) (x – r)3, 

for x ‘close’ to r. 

O X 

Y 

p is approximated near r by 
polynomials whose derivatives at r
equal to the derivatives of φ. 

y = p(x) 

• 

 y = p(r) + p '(r) (x - r)  + 
1

 2!  p " (r) (x -r)2 

 y = p(r) + p '(r) (x - r)  

 (r, p(r)  
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As an illustration, to find the third degree Taylor's polynomial approximation for  p(x) = x at 
point x = 1, we have  

p'(x) = 
1

2 x
,  p"(x) = – 

1
4x

–3/2  and  p"'(x) =  
3

8x
–5/2  

     and so 

p(1) = 1, p ' (1) = 
1
2, p"(1) = – 

1
4  and p"'(1) =  

3
8 . 

So the Taylor's polynomial of degree 3 for the function p (x) at x = 1 yields  

     F3(x) =  1 + 
1
2  (x – 1) – 

1
8   (x–1)2  + 

1
16  (x – 1)3. 

 Similarly at x = 0, since p '(0), p"(0) and p "'(0) do not exist. Therefore, Taylor's 
polynomial at point x = 0 does not exist. 

In general, if a real valued function   p  having continuous (n – 1)st
 derivative in the open interval 

(a, b) has a finite n
th derivative in the closed interval [a, b], it can be approximated more 

accurately by a polynomial of degree n in the form 

Fn(x) = p (r) + p '(r) (x – r) + 
1
2  p ''(r)  (x – r)2 + … + 

1
 n!  p n(r)  (x – r)n 

 for x ‘close’ to r. 

The polynomial Fn is called a Taylor polynomial of degree n for  p  at  r. An important but 
obvious property of Taylor polynomial is 

Fn
(k) (r) = p k(r),          for k = 0, 1, 2, …., n. 

In particular, to find the  Taylor's polynomial of degree n for the function   p (x) = ex  at point x = 

0, 

            p n
 (x) = ex for every n Z+ and therefore  

p '(0) = p "(0) = …  = p 
n (0) = 1. 

 Taylor's polynomial of degree n for  ex at point x = 0 is 

       Fn (0) = p (0) + p '(0) x +  
1
2  p ''(0)  x2 + … +  

1
 n!  p n(0)  xn 

                                                = 1 + x + 
x

2

2  + … + 
x

n

n! . 

6. Conclusion 

In mathematics, approximation theory is concerned with how functions can best be approximated 
as close as possible with simpler functions. An approximation of more complicated functions by 
polynomials is a basic building block for a numerical technique. Sometimes, approximation of 
functions by generalized Fourier series is based upon summation of a series of terms based upon 
orthogonal polynomials. 
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