Singular Factorization of an Arbitrary Matrix

Gyan Bahadur Thapa ${ }^{1}$, P. Lam-Estrada ${ }^{2}$, J. López-Bonilla ${ }^{3 a}$
${ }^{1}$ Pulchowk Campus, Institute of Engineering, Tribhuvan University, Kathmandu, Nepal
${ }^{2}$ ESFM-IPN, Depto. de Matemáticas, Edif. 9, Col. Lindavista, CP 07738, México DF
${ }^{3}$ ESIME-Zacatenco, Instituto Politécnico Nacional (IPN), Edif. 5, CP 07738, México DF
${ }^{a}$ Corresponding author: jlopezb@ipn.mx

Received: May 20, 2016 Revised: July 25, 2016 Accepted: July 28, 2016

Abstract

In this paper, we study the Singular Value Decomposition of an arbitrary matrix $\mathrm{A}_{n x m}$, especially its subspaces of activation, which leads in natural manner to the pseudo inverse of Moore -Bjenhammar - Penrose. Besides, we analyze the compatibility of linear systems and the uniqueness of the corresponding solution and our approach gives the Lanczos classification for these systems.

Keywords: SVD, Compatibility of linear systems, Pseudo inverse of a matrix

1. Introduction

For any real matrix $A_{n x m}$, Lanczos [18] constructs the matrix:

$$
S_{(n+m) x(n+m)}=\left(\begin{array}{cc}
0 & A \tag{1}\\
A^{T} & 0
\end{array}\right),
$$

and he studies the eigenvalue problem:

$$
\begin{equation*}
S \vec{\omega}=\lambda \vec{\omega}, \tag{2}
\end{equation*}
$$

where the proper values are real because S is a real symmetric matrix. Besides,

$$
\begin{equation*}
\operatorname{rank} A \equiv p=\text { Number of positive eigenvalues of } S \tag{3}
\end{equation*}
$$

such that $1 \leq p \leq \min (n, m)$. Then the singular values or canonical multipliers, thus called by Picard [26] and Sylvester [31], respectively, follow the scheme:

$$
\begin{equation*}
\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p},-\lambda_{1},-\lambda_{2}, \ldots,-\lambda_{p}, 0,0, \ldots, 0, \tag{4}
\end{equation*}
$$

that is, $\lambda=0$ has the multiplicity $n+m-2 p$. Only in the case $p=n=m$ can occur the absence of the null eigenvalue.

The proper vectors of S, named 'essential axes' by Lanczos, can be written in the form:

$$
\begin{equation*}
\vec{\omega}_{(n+m) x 1}=\binom{\vec{u}}{\vec{v}}_{m}^{n}, \tag{5}
\end{equation*}
$$

then (1) and (2) imply the Modified Eigenvalue Problem:

$$
\begin{equation*}
A_{n x m} \vec{v}_{m x 1}=\lambda \vec{u}_{n x 1}, \quad A_{m x n}^{T} \vec{u}_{n x 1}=\lambda \vec{v}_{m x 1} \tag{6}
\end{equation*}
$$

hence

$$
\begin{equation*}
A^{T} A \vec{v}=\lambda^{2} \vec{v}, \quad A A^{T} \vec{u}=\lambda^{2} \vec{u} \tag{7}
\end{equation*}
$$

with special interest in the associated vectors with the positive eigenvalues because they permit to introduce the matrices:

$$
\begin{equation*}
U_{n x p}=\left(\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{p}\right), \quad V_{m x p}=\left(\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right) \tag{8}
\end{equation*}
$$

verifying $U^{T} U=V^{T} V=I_{p x p}$ because:

$$
\begin{equation*}
\vec{u}_{j} \cdot \vec{u}_{k}=\vec{v}_{j} \cdot \vec{v}_{k}=\delta_{j k}, \tag{9}
\end{equation*}
$$

therefore $\vec{\omega}_{j} \cdot \vec{\omega}_{k}=2 \delta_{j k}, j, k=1,2, \ldots, p$. Thus, the Singular Value Decomposition (SVD) express that A is the product of three matrices [18-21]:

$$
\begin{equation*}
A_{n x m}=U_{n x p} \Lambda_{p x p} V_{p x m}^{T}, \quad \Lambda=\operatorname{Diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}\right) \tag{10}
\end{equation*}
$$

This relation tells that in the construction of A we do not need information about the null proper value; the information from $\lambda=0$ is important to study the existence and uniqueness of the solutions for a linear system associated to A. This approach of Lanczos is similar to the methods in [15, 16, 27, 28]. It can be considered that Jordan [15, 16], Sylvester [30, 31] and Beltrami [2] are the founders of the SVD [29], and there is abundant literature [4, 6, 7, 11, 30, 34] on this matrix factorization and its applications.

The rest of the paper is planned as follows: In Section 2, we realize an analysis of the proper vectors $\vec{\omega}_{j}, j=1, \ldots, n+m$, associated to the eigenvalues (4), which leads to the subspaces of activation of A with the pseudo inverse of Moore [22], Bjerhammar [3] and Penrose [25]. In Section 3, we study the compatibility of linear systems, with special emphasis in the important participation of the null singular value and its corresponding eigenvectors. Finally, Section 4 concludes the paper.

2. Subspaces of Activation and Natural Inverse Matrix

From (6), the proper vectors associated with the positive eigenvalues verify:

$$
\begin{equation*}
A \vec{v}_{j}=\lambda_{j} \vec{u}_{j}, \quad A^{T} \vec{u}_{j}=\lambda_{j} \vec{v}_{j}, \quad j=1, \ldots, p \tag{11}
\end{equation*}
$$

then

$$
\begin{equation*}
A\left(-\vec{v}_{j}\right)=\left(-\lambda_{j}\right) \vec{u}_{j}, \quad A^{T} \vec{u}_{j}=\left(-\lambda_{j}\right)\left(-\vec{v}_{j}\right) \tag{12}
\end{equation*}
$$

that is,

$$
\begin{equation*}
S\binom{\vec{u}_{k}}{\vec{v}_{k}}=\lambda_{k}\binom{\vec{u}_{k}}{\vec{v}_{k}} \quad \text { implies } \quad S\binom{\vec{u}_{k}}{-\vec{v}_{k}}=\left(-\lambda_{k}\right)\binom{\vec{u}_{k}}{-\vec{v}_{k}}, \tag{13}
\end{equation*}
$$

therefore, the eigenvectors $\binom{\vec{u}_{j}}{\vec{v}_{j}}$ and $\binom{\vec{u}_{j}}{-\vec{v}_{j}}$ correspond to the proper values $\lambda_{1}, \ldots, \lambda_{p}$ and $-\lambda_{1}, \ldots,-\lambda_{p}$, respectively. Thus we must have $n+m-2 p$ eigenvectors connected to $\lambda=0$, which is denoted by $\vec{\omega}_{r}^{(0)}$, and from (6) we further have:

$$
\begin{align*}
& \vec{\omega}_{j}^{(0)}=\left(\begin{array}{c}
\vec{u}_{j}^{(0)} \\
0 \\
\vdots \\
0
\end{array}\right)_{m}^{n}, \quad A^{T} \vec{u}_{j}^{(0)}=\overrightarrow{0}, \quad j=1, \ldots, n-p, \tag{14}\\
& \vec{\omega}_{(n-p)+k}^{(0)}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
\vec{v}_{k}^{(0)}
\end{array}\right)_{m}^{n}, \quad A \vec{v}_{k}^{(0)}=\overrightarrow{0}, \quad k=1, \ldots, m-p . \tag{15}
\end{align*}
$$

The conditions (14) and (15) can be multiplied by A and A^{T}, then $\vec{u}_{j}^{(0)}$ and $\vec{v}_{k}^{(0)}$ are eigenvectors of the Gram matrices $A A^{T}$ and $A^{T} A$:

$$
\begin{equation*}
\left(A A^{T}\right)_{n x n} \vec{u}_{j}^{(0)}=\overrightarrow{0}, \quad\left(A^{T} A\right)_{m x m} \vec{v}_{k}^{(0)}=\overrightarrow{0} \tag{16}
\end{equation*}
$$

but by (7) these matrices have p proper vectors for $\lambda_{1}, \ldots, \lambda_{p}$, therefore only there are $n-$ p and $m-p$ vectors $\vec{u}_{j}^{(0)}$ and $\vec{v}_{k}^{(0)}$, that can be selected with orthonormality:

$$
\begin{equation*}
\vec{u}_{j}^{(0)} \cdot \vec{u}_{r}^{(0)}=\delta_{j r}, \quad \vec{v}_{k}^{(0)} \cdot \vec{v}_{q}^{(0)}=\delta_{k q} \tag{17}
\end{equation*}
$$

that is, $\vec{\omega}_{j}^{(0)} \cdot \vec{\omega}_{k}^{(0)}=\delta_{j k}$, then $\left\{\vec{u}_{j}^{(0)}\right\}$ and $\left\{\vec{v}_{k}^{(0)}\right\}$ are bases for the Kernel A^{T} and Kernel A, respectively.

If we employ (10) in (14), SVD of A results $V \Lambda U^{T} \vec{u}_{j}^{(0)}=\overrightarrow{0}$, whose multiplication by the left with $\Lambda^{-1} V^{T}$ [remembering that $U^{T} U=V^{T} V=I$], gives the compatibility condition:

$$
\begin{equation*}
U^{T} \vec{u}_{j}^{(0)}=\overrightarrow{0} \quad \Rightarrow \quad \vec{u}_{r} \cdot \vec{u}_{j}^{(0)}=0, \quad r=1, \ldots, p ; \quad j=1, \ldots, n-p \tag{18}
\end{equation*}
$$

equivalently

$$
\begin{equation*}
\operatorname{Col} U \perp \quad \vec{u}_{k}^{(0)}, \quad k=1, \ldots, n-p . \tag{19}
\end{equation*}
$$

Similarly, if we use SVD into (15) and we multiply by $\Lambda^{-1} U^{T}$:

$$
\begin{align*}
& V^{T} \vec{v}_{k}^{(0)}=\overrightarrow{0}, \quad \vec{v}_{r} \cdot \vec{v}_{k}^{(0)}=0, \quad r=1, \ldots, p ; \quad k=1, \ldots m-p \tag{20}\\
& \therefore \quad \operatorname{Col} V \perp \vec{v}_{j}^{(0)}, \quad j=1, \ldots, m-p \tag{21}
\end{align*}
$$

It is convenient to make two remarks:
Remark 1: From $A=U \Lambda V^{T}$ is evident that the matrices U, Λ and V permit to construct A, but is useful to know more about the structure of A and its transpose:

$$
\begin{equation*}
A=\left(\vec{a}_{1} \ldots \vec{a}_{m}\right), \quad A^{T}=\left(\vec{c}_{1} \ldots \vec{c}_{n}\right) \tag{22}
\end{equation*}
$$

where $\left(\vec{a}_{j}\right)_{n x 1}$ and $\left(\vec{c}_{k}\right)_{m x 1}$ are the corresponding columns. Then from (10) we obtain the expressions:

$$
\begin{equation*}
\vec{a}_{j}=\lambda_{1} v_{1}^{(j)} \vec{u}_{1}+\cdots+\lambda_{p} v_{p}^{(j)} \vec{u}_{p}, j=1, \ldots m, \quad \vec{c}_{k}=\lambda_{1} u_{1}^{(k)} \vec{v}_{1}+\cdots+\lambda_{p} u_{p}^{(k)} \vec{v}_{p}, \quad k=1, \ldots, n \tag{23}
\end{equation*}
$$

with the notation:

$$
\begin{equation*}
v_{r}^{(j)}=j \text { th }- \text { component of } \vec{v}_{r}, \tag{24}
\end{equation*}
$$

and similar for $u_{r}^{(k)}$; we observe that \vec{c}_{k}^{T} are the rows of A.
From (23) are immediate the equalities of subspaces:

$$
\begin{equation*}
\operatorname{Col} A=\operatorname{Col} U, \quad \operatorname{Row} A=\operatorname{Col} V \tag{25}
\end{equation*}
$$

but $\operatorname{dim} \operatorname{Col} U=\operatorname{dim} \operatorname{Col} V=p$, then:

$$
\begin{equation*}
\operatorname{rank} A=\operatorname{dim} \operatorname{Col} A=\operatorname{dim} \text { Row } A=p \tag{26}
\end{equation*}
$$

in according with (3).
Remark 2: We have the rank-nullity theorem [24, 32, 33]:

$$
\begin{equation*}
\operatorname{dim}(\operatorname{Kernel} A)+\operatorname{rank} A=m, \tag{27}
\end{equation*}
$$

therefore $\operatorname{dim}($ Kernel $A)=m-p$, by this reason there are $(m-p)$ vectors $\vec{v}_{k}^{(0)}$ with the property (15). Besides,

$$
\begin{equation*}
\operatorname{dim}\left(\operatorname{Kernel} A^{T}\right)+\operatorname{rank} A^{T}=n, \tag{28}
\end{equation*}
$$

but $\operatorname{rank} A^{T}=\operatorname{rank} A=p$, then $\operatorname{dim}\left(\right.$ Kernel $\left.A^{T}\right)=n-p$ in harmony with the $(n-$ p) vectors $\vec{u}_{j}^{(0)}$ verifying (14).

If $A_{n x m}$ acts on an arbitrary vector $\vec{x} \varepsilon E_{m}$ produces a vector $\vec{y} \varepsilon E_{n}$, with the decompositions:

$$
\begin{equation*}
\vec{x}=\vec{x}^{(0)}+\vec{x}_{\mathrm{CV}}, \quad \vec{y}=\vec{y}^{(0)}+\vec{y}_{\mathrm{CU}} \tag{29}
\end{equation*}
$$

where

$$
\begin{align*}
& \vec{x}^{(0)} \varepsilon \operatorname{Kernel} A, \quad \vec{x}_{\mathrm{CV}} \varepsilon \operatorname{Col} V, \quad A \vec{x}^{(0)}=\overrightarrow{0}, \quad \vec{x}^{(0)} \cdot \vec{x}_{\mathrm{CV}}=0, \tag{30}\\
& \vec{y}^{(0)} \varepsilon \operatorname{Kernel} A^{T}, \quad \vec{y}_{\mathrm{CU}} \varepsilon \operatorname{Col} U, \quad A^{T} \vec{y}^{(0)}=\overrightarrow{0}, \quad \vec{y}^{(0)} \cdot \vec{y}_{\mathrm{CU}}=0,
\end{align*}
$$

thus we say that A is activated into the subspaces $\operatorname{Col} U$ and $\operatorname{Col} V$.
Therefore, $A \vec{x}=A \vec{x}_{\mathrm{CV}}=\vec{y}$ and in the construction of \vec{y} we lost the information about $\vec{x}^{(0)}$, then it is not possible to recover \vec{x} from \vec{y}, that is, it is utopian to search for an 'inverse matrix' acting on \vec{y} to give \vec{x}. However, when $\vec{x}^{(0)}=\overrightarrow{0}$ and $\vec{y}^{(0)}=\overrightarrow{0}$ we can introduce a 'natural inverse matrix', thus named it by Lanczos, which coincides with the pseudo inverse of Moore [22], Bjerhammar [3] and Penrose [25]:
"Any matrix $A_{n x m}$, restricted to its subspaces of activation, always can be inverted".
In fact, if $\vec{x} \varepsilon \operatorname{Col} V$ is an arbitrary vector, $\vec{x}=q_{1} \vec{v}_{1}+\cdots+q_{p} \vec{v}_{p}$, then from (6):

$$
\begin{equation*}
A \vec{x}=\lambda_{1} q_{1} \vec{u}_{1}+\cdots+\lambda_{p} q_{p} \vec{u}_{p}=\vec{y} \varepsilon \operatorname{Col} U, \tag{32}
\end{equation*}
$$

and now we search the inverse natural $A_{N}^{-1}{ }_{m x n}$ such that:

$$
\begin{equation*}
A_{N}^{-1} \vec{y}=\vec{x}, \tag{33}
\end{equation*}
$$

or more general:

$$
\begin{equation*}
A_{N}^{-1} A \vec{x}=\vec{x}, \quad \forall \vec{x} \varepsilon \operatorname{Col} V, \quad A A_{N}^{-1} \vec{y}=\vec{y}, \quad \forall \vec{y} \varepsilon \operatorname{Col} U . \tag{34}
\end{equation*}
$$

If the decomposition (10) is applied to (32), we deduce the natural inverse matrix:

$$
\begin{equation*}
A_{N}^{-1}{ }_{m x n}=V_{m x p} \Lambda_{p x p}^{-1} U_{p x n}^{T}, \tag{35}
\end{equation*}
$$

satisfying (33) and (34). With (35), it is easy to prove the properties [24, 32]:

$$
\begin{equation*}
A A_{N}^{-1} A=A, \quad A_{N}^{-1} A A_{N}^{-1}=A_{N}^{-1}, \quad\left(A A_{N}^{-1}\right)^{T}=A A_{N}^{-1}, \quad\left(A_{N}^{-1} A\right)^{T}=A_{N}^{-1} A, \tag{36}
\end{equation*}
$$

which characterize the pseudo inverse of Moore - Bjerhammar - Penrose, that is, the inverse matrix [8, 9, 12] of these authors coincides with the natural inverse (35) deduced by Lanczos [18 -21].

In the SVD only participate the positive proper values of S, without the explicit presence of the vectors $\vec{u}_{j}^{(0)}$ and $\vec{v}_{k}^{(0)}$ associated with the null eigenvalue, then it is natural to investigate the role performed by the information related with $\lambda=0$. In Section 3, we study linear systems where A is the corresponding matrix of coefficients, and we exhibit that the $\vec{u}_{j}^{(0)}$ permit to
analyze the compatibility of such systems; besides, when they are compatibles then with the $\vec{v}_{k}^{(0)}$, we search if the solution is unique. In other words, the null eigenvalue does not participates when we consider to A as an algebraic operator and we construct its factorization (10), but $\lambda=0$ is important if A acts as the matrix of coefficients of a linear system.

3. Compatibility of Linear Systems

A Linear System of n equations with m unknowns can be written in the matrix form:

$$
\begin{equation*}
A_{n x m} \vec{x}_{m x 1}=\vec{b}_{n x 1}, \tag{37}
\end{equation*}
$$

where (10) implies that $U \Lambda V^{T} \vec{x}=\vec{b}$ whose multiplication by $\vec{u}_{j}^{(0) T}$ gives the compatibility conditions:

$$
\begin{equation*}
\vec{u}_{j}^{(0)} \cdot \vec{b}=0, \quad j=1, \ldots, n-p \tag{38}
\end{equation*}
$$

due to (19). Then the system (37) is compatible if \vec{b} is orthogonal to all independent solutions of the adjoint system $A^{T} \vec{u}=\overrightarrow{0}$, therefore:

$$
\begin{equation*}
\text { " } A \vec{x}=\vec{b} \text { has solution if } \vec{b} \varepsilon \operatorname{Col} U \text { ", } \tag{39}
\end{equation*}
$$

which is the traditional formulation [6] of the compatibility condition for a given linear system. From (25) and (39) is clear that A and the augmented matrix ($A \vec{b}$) have the same column space:

$$
\begin{equation*}
\operatorname{Col} A=\operatorname{Col}(A \vec{b})=\operatorname{Col} U, \tag{40}
\end{equation*}
$$

thus at the books [32] we find the result:

$$
\begin{equation*}
\text { " } A \vec{x}=\vec{b} \text { is compatible if } \operatorname{rank} A=\operatorname{rank}(A \vec{b}) \text { ". } \tag{41}
\end{equation*}
$$

If $\vec{b} \varepsilon \operatorname{Col} U$, then from (11):

$$
\begin{equation*}
\vec{b}=b^{(1)} \vec{u}_{1}+\cdots+b^{(p)} \vec{u}_{p}=A \vec{Q}, \quad \vec{Q}=\frac{b^{(1)}}{\lambda_{1}} \vec{v}_{1}+\cdots+\frac{b^{(p)}}{\lambda_{p}} \vec{v}_{p}, \tag{42}
\end{equation*}
$$

and (37) leads to:

$$
\begin{equation*}
A(\vec{x}-\vec{Q})=\overrightarrow{0} . \tag{43}
\end{equation*}
$$

The set of solutions of (43) is the Kernel A with dimension ($m-p$) due to (27), therefore (43) has the unique solution $\vec{x}-\vec{Q}=\overrightarrow{0}$ when $p=m$, that is, when rank A coincides with the number of unknowns we have not vectors $\vec{v}_{k}^{(0)} \neq \overrightarrow{0}$ verifying $A \vec{v}_{k}^{(0)}=\overrightarrow{0}$. Then:
"The compatible system $A \vec{x}=\vec{b}$ has unique solution only when $p=m$ ",
besides from (24) and (42) we obtain that $b^{(k)}=\vec{b} \cdot \vec{u}_{k}, \vec{x}=\vec{Q}$ and:

$$
\begin{equation*}
x_{r}=Q^{(r)}=\frac{b^{(1)}}{\lambda_{1}} v_{1}^{(r)}+\cdots+\frac{b^{(p)}}{\lambda_{p}} v_{p}^{(r)}=\vec{b} \cdot \vec{t}_{r}, \quad r=1, \ldots, m \tag{45}
\end{equation*}
$$

where

$$
\begin{equation*}
\vec{t}_{r}=\frac{v_{1}^{(r)}}{\lambda_{1}} \vec{u}_{1}+\cdots+\frac{v_{p}^{(r)}}{\lambda_{p}} \vec{u}_{p} \quad \varepsilon \operatorname{Col} U \tag{46}
\end{equation*}
$$

thus the value of each unknown is the projection of \vec{b} onto each vector (46). In consequence, $\vec{b} \in \operatorname{Col} U$ guarantees the solution of (37), and it is unique only if $p=m$.

Besides, from (42) we see that the solution $\vec{x}=\vec{Q}$ implies that $\vec{x} \varepsilon \operatorname{Col} V$, then we have the system $\quad A \vec{x}=\vec{b}$ where \vec{x} and \vec{b} are totally embedded into $\operatorname{Col} V$ and $\operatorname{Col} U$, respectively, that is, \vec{x} and \vec{b} are into the subspaces of activation of A, thus from (32) and (33) there is the natural inverse A_{N}^{-1} such that:
$\vec{x}=A_{N}^{-1} \vec{b}=V_{m x m} \Lambda_{m x m}^{-1} U_{m x n}^{T} \vec{b}=V \Lambda^{-1}\left(\begin{array}{c}b^{(1)} \\ \vdots \\ b^{(m)}\end{array}\right)=V\left(\begin{array}{c}\frac{b^{(1)}}{\lambda_{1}} \\ \vdots \\ \frac{b^{(m)}}{\lambda_{m}}\end{array}\right)=$
$\left(\begin{array}{c}\frac{b^{(1)}}{\lambda_{1}} v_{1}^{(1)}+\cdots+\frac{b^{(m)}}{\lambda_{m}} v_{m}^{(1)} \\ \vdots \\ \frac{b^{(1)}}{\lambda_{1}} v_{1}^{(m)}+\cdots+\frac{b^{(m)}}{\lambda_{m}} v_{m}^{(m)}\end{array}\right), \quad p=m$,
in according with (45). The vectors (46) are important because their inner products with \vec{b} give the solution of (37) via (45), and they also are remarkable because permit to construct the natural inverse:

$$
\begin{equation*}
A_{N m x n}^{-1}=\left(\vec{t}_{1} \vec{t}_{2} \ldots \vec{t}_{m}\right)^{T}, \quad p=m . \tag{48}
\end{equation*}
$$

Lanczos [6] considers three situations:
i) $\quad n<m$: The linear system is under-determined because it has more unknowns than equations, and from $1 \leq p \leq \min (n, m)$ is impossible the case $p=m$, therefore, if (37) is compatible then its solution cannot be unique.
ii) $\quad n=m$: The system is even-determined with unique solution when $p=m$, that is, if $\operatorname{det} A \neq 0$. In this case also $p=n$, we have not vectors $\vec{u}_{j}^{(0)} \neq \overrightarrow{0}$, thus $\vec{b} \varepsilon \operatorname{Col} U$ and automatically the system is compatible.
iii) $\quad n>m$: The linear system is over-determined, and by $1 \leq p \leq \min (n, m)$ can occur the case $p=m$ for unique solution if the system is compatible.

Hence it is immediate the classification of linear systems introduced by Lanczos [21]:
Free and complete: $\quad p=n=m$, unique solution,
Restricted and complete:

$$
\begin{equation*}
p=m<n, \text { over-determined, unique solution, } \tag{49}
\end{equation*}
$$

Free and incomplete: $\quad p=n<m$, under-determined, non-unique solution,
Restricted and incomplete: $p<n$ and $p<m$, solution without uniqueness, with the meaning:

Free: The conditions (30) are satisfied trivially.
Restricted: It is necessary to verify that $\vec{b} \varepsilon \operatorname{Col} U$.
Complete: The solution has uniqueness.
Incomplete: Non-unique solution.
When $p \neq m$, the homogeneous system $A \vec{v}=\overrightarrow{0}$ has the non-trivial solutions $\vec{v}_{k}^{(0)}$, then from (27) we conclude that the general solution of (37) is:

$$
\begin{equation*}
\vec{x}=\vec{Q}+c_{1} \vec{v}_{1}^{(0)}+\cdots+c_{m-p} \vec{v}_{m-p}^{(0)} \tag{51}
\end{equation*}
$$

where the c_{k} are arbitrary constants.

4. Conclusion

With the SVD we can find the subspaces of activation of A, and it leads to the natural inverse [6, 26-28] of any matrix, known it in the literature as the Moore-Penrose pseudo inverse. Besides, the SVD gives a better understanding of the compatibility of linear systems. On the other hand, Lanczos [21] showed that the Singular Value Decomposition provides a universal platform to study linear differential and integral operators for arbitrary boundary conditions. We note that the term 'singular value' was introduced by Green [10] (see [5] too) in his studies on electromagnetism. The SVD is very useful to study the rotation matrix in classical mechanics [14] and to comprehend the matrix technique to deduce gauge transformations of Lagrangians [17]. For a graphic example of the use of the SVD in image processing, we refer see [1]; and for its use in cryptography, we refer [23]. Heat [13] mentions software for singular value computations.

References

[1] Andrews HC and Patterson CL (1975), Outer product expansions and their uses in digital image processing. Am. Math. Monthly, 82: 1-13.
[2] Beltrami E (1873), Sulle funzioni bilineari. Giornale di Mathematische, 11: 98-106.
[3] Bjerhammar A (1951), Application of calculus of matrices to method of least squares, with special references to geodetic calculations. Trans. Roy. Inst. Tech. Stockholm, (49): 1-86.
[4] Blank SJ, Krikorian N and Spring D (1989), A geometrically inspired proof of the singular value decomposition. Am. Math. Monthly 96(3): 238-239.
[5] Cannell DM (2001), George Green, mathematician \& physicist 1793-1841. SIAM, Philadelphia, USA.
[6] Eckart C and Young G (1939), A principal axis transformation for non-hermitian matrices. Bull. Amer. Math. Soc., 45(2) : 118-121.
[7] Gaftoi V, López-Bonilla J and Ovando G (2007), Singular value decomposition and Lanczos potential, in "Current topics in quantum field theory research", Ed. O. Kovras, Nova Science Pub., New York, Chap. 10, 313-316.
[8] Golub GH and Kahan W (1965), Calculating the singular values and pseudo inverse of a matrix. SIAM J. Numer.Anal. B2: 205-224.
[9] Greville TNE (1960), Some applications of the pseudo inverse of a matrix. SIAM Rev., 2 (1) : 15-22.
[10] Green G (1828), An essay on the application of mathematical analysis to the theories of electricity and magnetism. Private subscription, only fifty copies, reprinted in three parts at J. Reine Angewand.Math. 39 (1850) 73-89, 44 (1852) 356-374 and 47 (1854): 161-212.
[11] Guerrero IM, López-Bonilla J and Rosales RL (2012), SVD applied to Dirac super matrix, The SciTech, J. Sci. \& Tech. Special Issue, Aug. 111-114.
[12] Hazra AK (2006), Matrix algebra, calculus and generalized inverse. Cambridge Int. Sci. Pub.
[13] Heat MT (1997), Scientific computing: An introductory survey. Chap. 4, McGraw-Hill, New York.
[14] Hernández GA, López-Bonilla J and Rivera RJ (2012), A similarity transformation for the rotation matrix. Int. J. Math. Eng. Sci., 1(1): 8-12.
[15] Jordan C (1874), Mémoire sur les forms bilinéaires. J. de Mathématiques Pures et Appliquées, Deuxieme Série, 19: 35-54.
[16] Jordan C (1874), Sur la réduction des formes bilinéaires. Compt. Rend. Acad. Sci. Paris, 78: 614-617.
[17] Lam P, López-Bonilla J, López-Vázquez R and Ovando G (2015), Matrix method to construct point symmetries of Lagrangians, Bull. of Kerala Mathematics Association, 12(1): 43-52.
[18] Lanczos C (1958), Linear systems in self-adjoint form. Am. Math. Monthly, 65(9): 665-679.
[19] Lanczos C (1960), Extended boundary value problems. Proc. Int. Congr. Math. Edinburgh1958, Cambridge University Press, 154-181.
[20] Lanczos C (1966), Boundary value problems and orthogonal expansions. SIAM J. Appl. Math., 14(4): 831-863
[21] Lanczos C (1997), Linear Differential Operators, Dover, New York.
[22] Moore EH (1920), On the reciprocal of the general algebraic matrix. Bull. Am. Math. Soc., 26 (9) : 394-395.
[23] Moler CB and Morrison D (1983), Singular value analysis of cryptograms. Am. Math. Monthly, 90 : 78-87.
[24] Nakos G and Joyner D (1998), Linear algebra with applications. Chap. 8, Brooks/Cole Pub. Co, New York.
[25] Penrose R (1955), A generalized inverse for matrices. Proc. Camb. Phil. Soc., 51: 406-413.
[26] Picard E (1910), Sur un theorem general relative aux integrals de premier espéce et sur quelques problémes de physique mathématique. Rend. Circ. Mat. Palermo, 25: 79-97.
[27] Schmidt E (1907), Zur theorie der linearen und nichtlinearen integralgleichungen. Teil 1, Mathematische Annalen Bd. 63: 433-476 and 64: 161-174.
[28] Smithies F (1963), Linear differential operators. The Mathematical Gazette 47: 265-266.
[29] Stewart GW (1993), On the early history of the SVD. SIAM Review, 35: 551-566
[30] Sylvester JJ (1889), Sur la réduction biorthogonale d’une forme linéo-linéaire á sa forme cannonique. Compt. Rend. Acad. Sci. Paris, 108: 651-653.
[31] Sylvester JJ (1889), On the reduction of a bilinear quantic of the nth order to the form of a sum of n products. Messenger of Mathematics, 19: 42-46.
[32] Weyr E (1885), Répartition des matrices en espaces et formation de toutes les espaces. C. R. Acad. Sci. Paris,100: 966-969.
[33] Weyr E (1890), Zur theorie der bilinearen formen. Mon. für Mathematik und Physik, 1:163236.
[34] Yanai H, Takeuchi K and Takane Y (2011), Projection matrices, generalized inverse matrices, and singular value decomposition. Chap. 3, Springer, New York.

