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Abstract: In this paper, we study the Singular Value Decomposition of an 

arbitrary matrix A, especially its subspaces of activation, which leads in 

natural manner to the pseudo inverse of Moore -Bjenhammar - Penrose. Besides, 

we analyze the compatibility of linear systems and the uniqueness of the 

corresponding solution and our approach gives the Lanczos classification for 

these systems. 
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1. Introduction 

For any real matrix  , Lanczos [18] constructs the matrix: 

         = 	  0  0,                                                                        (1) 

and he studies the eigenvalue problem: 

          = ,                                                                                     (2) 

where the proper values are real because S is a real symmetric matrix. Besides, 

         rank		 ≡  = Number	of	positive	eigenvalues	of	,                                                 (3) 

such that 1 ≤  ≤ min,. Then the singular values or canonical multipliers, thus called by 

Picard [26] and Sylvester [31], respectively, follow the scheme: 

          , ,… , ,−,−,… ,−, 0, 0,… , 0,	                                                          (4) 

that is,  = 0 has the multiplicity   + − 2. Only in the case   =  =   can occur the 

absence of the null eigenvalue. 

The proper vectors of S, named ‘essential axes’ by Lanczos, can be written in the form: 
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           =   ,                                                                            (5) 

then (1) and (2) imply the Modified Eigenvalue Problem: 

           = 		,																 = 		,                                              (6) 

hence 

         = 	,																 = 	,                                                                (7) 

with special interest in the associated vectors with the positive eigenvalues because they permit 

to introduce the matrices: 

         = , ,… , ,													 = , ,… , ,                                               (8) 

verifying   =  =   because: 

         ∙  =  ∙  = 	,                                                               (9) 

therefore   ∙  = 2,			,  = 1,2,… , . Thus, the Singular Value Decomposition (SVD) 

express that A is the product of three matrices [18 - 21]: 

           = Λ	,											Λ = Diag	, ,… , .                                        (10) 

This relation tells that in the construction of A we do not need information about the null proper 

value; the information from  = 0 is important to study the existence and uniqueness of the 

solutions for a linear system associated to A. This approach of Lanczos is similar to the methods 

in [15, 16, 27, 28]. It  can be considered that Jordan [15, 16], Sylvester [30, 31] and Beltrami [2] 

are the founders of the SVD [29], and there is abundant literature [4, 6, 7, 11, 30, 34] on this 

matrix factorization and its applications. 

The rest of the paper is planned as follows: In Section 2, we realize an analysis of the proper 

vectors ,  = 1,… ,  + , associated to the eigenvalues (4), which leads to the subspaces of 

activation of A with the pseudo inverse of Moore [22], Bjerhammar [3] and Penrose [25]. In 

Section 3, we study the compatibility of linear systems, with special emphasis in the important 

participation of the null singular value and its corresponding eigenvectors. Finally, Section 4 

concludes the paper.  

2. Subspaces of Activation and Natural Inverse Matrix 

From (6), the proper vectors associated with the positive eigenvalues verify: 

             = 	,												 = 	,							 = 1,… ,                                                    (11) 

then 
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           − = −		,												 = −−),                                                  (12) 

that is, 

         =        implies        = −  ,                                                (13) 

therefore, the eigenvectors    and     correspond to the proper values  ,… ,   and  −,… , −,   respectively. Thus we must have  + − 2  eigenvectors connected to  = 0,  
which is denoted by  ,  and from (6) we further have:   

           = ⋮  	,											 = 0	,						 = 1,… ,  − ,                                       (14) 

              =  ⋮ 		,												 = 0	,						 = 1,… , − .                                    (15) 

The conditions (14) and (15) can be multiplied by 	and		,  then 	and		 are 

eigenvectors of the Gram matrices  	and		: 
              	 = 0	,																			 = 0	                                              (16) 

but by (7) these matrices have p proper vectors for ,… , , therefore only there are  −		and		 −   vectors  	and		, that can be selected with orthonormality: 

            ∙  = 	,																	 ∙  = 	                                                      (17) 

that is,   ∙  = ,  then  {}		and		{}  are bases for the Kernel  and  Kernel A, 

respectively. 

If we employ (10) in (14),  SVD of A results Λ = 0, whose multiplication by the left 

with  Λ [remembering that   =  = ], gives the compatibility condition: 

         = 0 						⇒ 						  ∙  = 0,					 = 1,… , 		; 					 = 1,… ,  − ,                           (18) 

equivalently 

         Col			 ⊥ 			 	,							 = 1,… ,  − .                                                         (19) 

Similarly, if we use SVD into (15) and we multiply by  Λ: 
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           = 0	,										 ∙  = 0,						 = 1,… , 	; 					 = 1,… −                              (20) 

          ∴ 					Col				 ⊥ 		 	,						 = 1,… , − .                                                          (21) 

It is convenient to make two remarks: 

Remark 1: From  = Λ is evident that the matrices , Λ		and		 permit to construct , but 

is useful to know more about the structure of  and its transpose: 

         =  …	,														 =  …	,                                                         (22) 

where 		and		 are the corresponding columns. Then from (10) we obtain the 

expressions: 

  =  + ⋯+ ,			 = 1,…,							 =  + ⋯+ ,				 = 1,… ,    

                  (23) 

with the notation: 

             = 	th − component	of		,                                                               (24) 

and similar for ; we observe that    are the rows of . 
From (23) are immediate the equalities of subspaces: 

              Col	 = Col		,													Row	 = Col		,                                                         (25) 

but dim Col  = dim Col  = , then: 

              rank  = dim Col  = dim Row  =                                                             (26) 

in according with (3). 

Remark 2: We have the rank-nullity theorem [24, 32, 33]: 

              dim (Kernel ) + rank  = ,                                                                      (27) 

therefore dim (Kernel ) =  − , by this reason there are  − 	vectors		 with the 

property (15). Besides, 

                dim (Kernel ) + rank  = ,                                                                    (28) 

but rank	 = rank	 = , then dim (Kernel  =  − 	 in harmony with the  −	vectors		  verifying (14). 

If  acts on an arbitrary vector  		 produces a vector  			, with the decompositions: 
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                  =  + 	,														 =  + 	,                                                           (29) 

where 

                 		Kernel		,						Col	,									 = 0,						 ∙  = 0,         (30) 

              		Kernel	,					Col	,								 = 0,				 ∙  = 0, 
thus we say that  is activated into the subspaces Col 		and		Col	. 
Therefore,   =  =   and in the construction of   we lost the information about  , 
then it is not possible to recover 		from	, that is, it is utopian to search for an ‘inverse matrix’ 

acting on 		to	give		. However, when   = 0		and		 = 0  we can introduce a ‘natural 

inverse matrix’, thus named it by Lanczos, which coincides with the pseudo inverse of Moore 

[22], Bjerhammar [3] and Penrose [25]: 

 “Any matrix  	, restricted to its subspaces of activation, always can be inverted”.          (31) 

In fact, if  		Col	 is an arbitrary vector,   =  + ⋯+ 	, then from (6):  

  =  + ⋯+  = 			Col	,                                                     (32) 

and now we search the inverse natural  		  such that: 

                     	 = 	,                                                                                 (33) 

or more general: 

                         = ,				∀				Col	,											 = ,					∀				Col	.                           (34) 

If the decomposition (10) is applied to (32), we deduce the natural inverse matrix: 

                      		 = 	Λ 	 ,                                                                    (35) 

satisfying (33) and (34). With (35), it is easy to prove the properties [24, 32]: 

       = ,										 = ,											 = ,											 = ,        (36) 

which characterize the pseudo inverse of Moore - Bjerhammar - Penrose, that is, the inverse 

matrix [8, 9, 12] of these authors coincides with the natural inverse (35) deduced by Lanczos [18 

- 21].  

In the SVD only participate the positive proper values of S, without the explicit presence of the 

vectors  	and		 associated with the null eigenvalue, then it is natural to investigate the 

role performed by the information related with  = 0. In Section 3, we study linear systems 

where  is the corresponding matrix of coefficients, and we exhibit that the   permit to 
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analyze the compatibility of such systems; besides, when they are compatibles then with the , 
we search if the solution is unique. In other words, the null eigenvalue does not participates when 

we consider to  as an algebraic operator and we construct its factorization (10), but   = 0 is 

important if  acts as the matrix of coefficients of a linear system. 

3. Compatibility of Linear Systems 

A Linear System of  equations with  unknowns can be written in the matrix form: 

                                       	 =  ,                                                                 (37) 

where (10) implies that  Λ =   whose multiplication by  	 gives the compatibility 

conditions: 

                                         ∙  = 0,							 = 1,… ,  −                                                         (38) 

due to (19). Then the system (37) is compatible if   is orthogonal to all independent solutions of 

the adjoint system   = 0, therefore: 

                                     " =    has solution if   			Col		",                                                  (39) 

which is the traditional formulation [6] of the compatibility condition for a given linear system. 

From (25) and (39) is clear that  and the augmented matrix  	  have the same column space: 

                               Col	 = Col		 = Col	,                                                                (40) 

thus at the books [32] we find the result: 

                                          " =    is compatible if   rank  = rank		".                          (41) 

If  		Col	, then from (11): 

                       =  + ⋯+  = 	,								 =   + ⋯+  ,                        (42) 

and (37) leads to: 

                                          −  = 0.                                                                           (43) 

The set of solutions of (43) is the Kernel  with dimension  −  due to (27), therefore (43) 

has the unique solution   −  = 0		when		 = , that is, when rank  coincides with the 

number of unknowns we have not vectors   ≠ 0		verifying		 = 0. Then: "The compatible system   =   has unique solution only when   = ",                              (44) 

besides from (24) and (42) we obtain that   =  ∙ ,  =   and: 
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                =  =   + ⋯+   =  ∙ 	,					 = 1,… ,                                   (45) 

where 

                  =   + ⋯+  				Col	,                                                                   (46) 

thus the value of each unknown is the projection of  onto each vector (46). In consequence, 			Col	  guarantees the solution of (37), and it is unique only if   = . 
  Besides, from (42) we see that the solution  = 	implies that 		Col	, then we have the 

system        = 		where		and	 are totally embedded into Col 	and		Col	, respectively, that 

is, 	and	 are into the subspaces of activation of , thus from (32) and (33) there is the natural 

inverse   such that: 

 

 = 	 = 		Λ 	 			=	Λ ⋮ = ⋮
 =

  ⋯ ⋮ ⋯  ,							 = ,               (47) 

in according with (45). The vectors (46) are important because their inner products with    give 

the solution of (37) via (45), and they also are remarkable because permit to construct the natural 

inverse: 

                                    			 = 	 …	,					 = .                                                       (48) 

Lanczos [6] considers three situations: 

i)  < :   The linear system is under-determined because it has more unknowns than 

equations, and from  1 ≤  ≤ min	, is impossible the case   = ,	 therefore, if (37) 

is compatible then its solution cannot be unique. 

ii)  = :   The system is even-determined with unique solution when   = , that is, if  det  ≠ 0. In this case also   = , we have not vectors   ≠ 0, thus				Col	  and 

automatically the system is compatible. 

iii)  > :   The linear system is over-determined, and by 1 ≤  ≤ min	,  can occur the 

case   =  for unique solution if the system is compatible. 

Hence it is immediate the classification of linear systems introduced by Lanczos [21]: 

    Free and complete:                =  = ,   unique solution, 

    Restricted and complete:      
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  =  < ,   over-determined,   unique solution,                                         (49) 

    Free and incomplete:             =  < ,   under-determined, non-unique solution, 

Restricted and incomplete:    < 			and				 < ,  solution without uniqueness, 

with the meaning: 

                                  Free: The conditions (30) are satisfied trivially. 

                     Restricted: It is necessary to verify that  		Col	.                                            (50) 

                                  Complete: The solution has uniqueness. 

                                  Incomplete: Non-unique solution. 

When  ≠ , the homogeneous system  = 0 has the non-trivial solutions , then from (27) 

we conclude that the general solution of (37) is: 

                                         =  +  + ⋯+  ,                                              (51) 

where the  are arbitrary constants. 

4. Conclusion 

With the SVD we can find the subspaces of activation of , and it leads to the natural inverse [6, 

26-28] of any matrix, known it in the literature as the Moore-Penrose pseudo inverse. Besides, 

the SVD gives a better understanding of the compatibility of linear systems. On the other hand, 

Lanczos [21] showed that the Singular Value Decomposition provides a universal platform to 

study linear differential and integral operators for arbitrary boundary conditions. We note that the 

term ‘singular value’ was introduced by Green [10] (see [5] too) in his studies on 

electromagnetism. The SVD is very useful to study the rotation matrix in classical mechanics 

[14] and to comprehend the matrix technique to deduce gauge transformations of Lagrangians 

[17]. For a graphic example of the use of the SVD in image processing, we refer see [1]; and for 

its use in cryptography, we refer [23]. Heat [13] mentions software for singular value 

computations.                                            
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