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Abstract: The genetic algorithm (GA) based stereo particle-pairing algorithm 

has been developed and applied to the spatial particle-pairing problem of the 

stereoscopic three-dimensional (3-D) PTV system. In this 3-D PTV system, 

particles viewed by two (or more than two) stereoscopic cameras with a parallax 

have to be correctly paired at every synchronized time step. This is important 

because the 3-D coordinates of individual particles cannot be computed without 

the knowledge of the correct stereo correspondence of the particles. In the 

present study, the GA algorithm is applied to the epipolar line proximity analysis 

for establishing correspondence of particles pairs between two co-instantaneous 

stereoscopic particles images, in order to compute the 3-D coordinates of every 

individual particle. The results are tested with various standard images and it’s 

found that the new strategy using GA works better than conventional particle 

pairing methods of 3-D particle tracking velocimetry for steoroscopic PTV.  

Keywords: Particle pairing problem, Genetic algorithm, Particle tracking 

velocimetry, 3-D PTV, Visualization. 

 

1. Introduction 

Particle image velocimetry (PIV) has been widely accepted as a reliable whole-field velocity 

measurement technique in every branch of the fluid engineering [1] and the recent trend goes to 

the three-dimensional. The main trend of the current 3-D PIV is a stereoscopic extension of a 

standard 2-D PIV system, using a finite-thickness laser light sheet and two stereoscopic CCD 

cameras in Scheimpflug optical arrangement [21]. However, much as the feasibility of this type 

of 3-D PIV is appreciated, the measurement target of this system is limited, by its principle, to 3-

D flows with relatively small out-of-plane velocity components. If full-volume 3-D flow 

measurement is required, the 3-D particle tracking velocimetry (PTV) [6, 20] is more promising 

technique than the stereoscopic PIV using Scheimpflug arrangement because the depth velocity 

component is as well resolved as the other components.  

A typical 3-D PTV is composed of two successive steps of particle matching [8]. The first one is 

the spatial particle pairing, in which the particles viewed by two (or more than two) stereoscopic 
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1. Introduction 

Particle image velocimetry (PIV) has been widely accepted as a reliable whole-field velocity 

measurement technique in every branch of the fluid engineering [1] and the recent trend goes to 

the three-dimensional. The main trend of the current 3-D PIV is a stereoscopic extension of a 

standard 2-D PIV system, using a finite-thickness laser light sheet and two stereoscopic CCD 

cameras in Scheimpflug optical arrangement [21]. However, much as the feasibility of this type 

of 3-D PIV is appreciated, the measurement target of this system is limited, by its principle, to 3-

D flows with relatively small out-of-plane velocity components. If full-volume 3-D flow 

measurement is required, the 3-D particle tracking velocimetry (PTV) [6, 20] is more promising 

technique than the stereoscopic PIV using Scheimpflug arrangement because the depth velocity 

component is as well resolved as the other components.  

A typical 3-D PTV is composed of two successive steps of particle matching [8]. The first one is 

the spatial particle pairing, in which the particles viewed by two (or more than two) stereoscopic 

cameras with a parallax (different viewing angles) have to be correctly paired at every 

synchronized time step. This is quite important because the 3-D coordinates of individual 

particles cannot be computed without being assured of identification of two particle images. 

After this step, the second process is the temporal particle pairing, in which the particles with 

computed 3-D coordinates have to be correctly paired with those at the next time step. Of these 

two processes of particle pairing, for the temporal particle pairing almost the entire 2-D particle 

tracking algorithms are applicable without any additional complexity [7, 9, 15, 24]. Two of the 

present authors have even successfully applied the GA to the temporal particle pairing in their 

previous article [16]. However, the spatial process of particle pairing always possesses some 

challenges when 3-D particle coordinates must be calculated with accuracy and with high 

recovery ratio. The main problem comes from the low velocity recovery ratio with respect to the 

number of the existing particles. This leads to a low density of measurement velocity vectors that 

looks much less satisfactory than those of the 2-D particle tracking velocimetry. In this context, 

for full-volume 3-D flow measurement, the epipolar line nearest-neighbor analysis [10] seems a 

standard technique of 3-D particle pairing, although there are some variations or modifications 

(simplified or complicated) reported so far in the literature. However, even within the extent of 

the standard epipolar line nearest-neighbor analysis, the detail of the algorithm is different from 

author to author. In most cases, the particle-pairing algorithm is based on the normal distance 

between a particle centroid in one of the two camera frames and an epipolar line projected on the 

same camera frame but derived from a particle centroid in the other camera frame. Since this 

minimization of normal distance in a single camera frame does not necessarily give rise to 

correct particle pairing, minimization of the sum of the left-camera and right-camera normal 

distances is often used as a better solution. 

Another troublesome factor for the accuracy of particle pairing using the epipolar line nearest-

neighbor analysis is the existence of candidate particles that are in reality incorrect partners but 

happen to come in the vicinity of the reference epipolar line. The usual method of avoiding this is 

to use a third (and sometimes a fourth) stereoscopic camera, which often facilitates the validation 

of the particle pairing results obtained from the two camera arrangement. However, an additional 

camera usually complicates the particle pairing strategy furthermore and the whole system 

requires more powerful, expensive and sophisticated hardware and software. If simple two-

camera setup has the possibility of producing more accurate particle pairing results, this will be 

without doubt the best solution to be adopted in the 3-D PTV.  

From such a background, some of the authors have reported some advanced computational 

techniques for the stereo matching problem of the 3-D PTV. A hopfield neural network based 

computational strategy [5] was suggested by Grant and Pan [3, 4]. In their approach, the camera 

configuration is restricted in such a way that the object plane, lens plane and image plane all need 

to be parallel to each other, and the lens of cameras must be in the same plane. In this kind of 

translational configuration, there is not enough flexibility to resolve the depth. Moreover, one of 

the present authors have already reported that the hopfield neural network approach is not a good 

choice for the particle tracking velocimetry when the particle number exceeds just a small value 
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of 150 particles per frame [11, 13]. Similarly, the neural network based on self-organizing maps 

(SOM) method [12, 14] and cellular neural network (CNN) method [17] using two-camera 

arrangement was applied for the stereo PTV. In the case of SOM, the algorithm works well with 

larger number of particles (say more than 500) but the initialization of the SOM computation 

parameters is too difficult and in addition, the stereo PTV results are also very sensitive to these 

computation parameters. On the other hand, the CNN method is indeed an interesting attempt 

with a concept of the minimization of Lyapunov energy function but in order to get reasonable 

matching results, the energy function must be composed of four object functions representing the 

physical constraints of the flow. This often complicates the computation process with an 

additional problem of the weight balance of the multiple object functions.  

With such a view, the present authors have been trying to establish a new particle pairing strategy 

for stereoscopic particle images obtained from two-camera arrangement. The point of their new 

strategy was the use of a genetic algorithm (GA) applied to the epipolar line nearest-neighbor 

analysis. Using this strategy, on one hand, the optimization operation can be carried out as an 

alternative to conventional methods of epipolar line proximity search, and on the other hand, 

multiple constraint conditions can be more effectively addressed than the other stereo PTV 

methods cited above. In the present study, the classical epipolar line nearest-neighbor analysis 

and similar techniques are improved to some extent by using a genetic strategy aiming at total 

minimization of normal distances. The accuracy of the spatial particle pairing results is examined 

by using the PIV Standard Images [18, 19], comprehensive sets of synthetic particle images 

showing a 3-D turbulent impinging jet. 

2. Genetic Algorithm 

2.1 Genetic encoding and the initial population 

In the classical stereoscopic PTV, the seeded particles in water or air are visualized and viewed 

with a volume light source. And then the particles in the left-camera frame image are correctly 

paired with those in the right-camera image or vice versa. Usually, the centroids of the particles 

must be extracted in advance through image binarization and labeling processes and the particles 

are assigned their own unique labels (ID numbers). This first step, rather important in the case of 

real particle images from visualization experiments, is not necessary in the present PIV Standard 

Images, because the particle centroid data come with the relevant synthetic images. The second 

step then is the GA encoding of the physical problem in the form of a genetic population com-

posed of specific chromosomes. In the case of the simple genetic algorithm (SGA), the gene 

codes are given with simple binary bits, while in many applications of optimization problems 

(e.g. a traveling salesman’s problem), they are often given by integer numbers representing some 

specific variables of the physical problem. In the present genetic algorithm, the encoding scheme 

as shown in Fig. 1 has been used for the spatial (stereoscopic) matching.  Every individual of the 

population consists of two integer-numbered chromosomes (or gene strings) and each 

chromosome gene string represents a sequence of left-frame and right-frame particle IDs (or 

between two subsequent image pairs), and numbers which are at the same gene position between 
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In the classical stereoscopic PTV, the seeded particles in water or air are visualized and viewed 

with a volume light source. And then the particles in the left-camera frame image are correctly 

paired with those in the right-camera image or vice versa. Usually, the centroids of the particles 

must be extracted in advance through image binarization and labeling processes and the particles 

are assigned their own unique labels (ID numbers). This first step, rather important in the case of 

real particle images from visualization experiments, is not necessary in the present PIV Standard 

Images, because the particle centroid data come with the relevant synthetic images. The second 

step then is the GA encoding of the physical problem in the form of a genetic population com-

posed of specific chromosomes. In the case of the simple genetic algorithm (SGA), the gene 

codes are given with simple binary bits, while in many applications of optimization problems 

(e.g. a traveling salesman’s problem), they are often given by integer numbers representing some 

specific variables of the physical problem. In the present genetic algorithm, the encoding scheme 

as shown in Fig. 1 has been used for the spatial (stereoscopic) matching.  Every individual of the 

population consists of two integer-numbered chromosomes (or gene strings) and each 

chromosome gene string represents a sequence of left-frame and right-frame particle IDs (or 

between two subsequent image pairs), and numbers which are at the same gene position between 

two chromosomes indicate the corresponding particle between right and left frames (or between 

two time-differential image frames). The goal of the algorithm is to create a best-fit biological 

individual with respect to the ideal environment needed by the constraints of the physical 

problems and thus to approach gradually to the most probable particle match result. 

To be more precise, one of the two chromosomes of individuals at the first generation is 

represented by a string of serial numbers starting from 1, while the other one by randomly 

ordered serial numbers without any duplication. The number of individuals is fixed all through 

the computation. The first generation individuals, after their evolution, get encountered with an 

iterative process of genetic operations consisting of fitness estimation, selection, reproduction, 

crossover, and mutation. Meanwhile, the two chromosomes of these individuals gradually give 

rise to better-fit pairs of gene codes and at the final generation, two chromosomes of the best-fit 

individual are expected to indicate the correct matches of particle ID numbers. 

                                                                  

                                                                                                             

 

                                                                                                                    N: Number of individuals 

                                                                                                                    i: Number of particles in the left image frame 

                                                                                                                    j: Number of particles in the right image frame 

 

 

 

 

 

 

 

 

Fig. 1: Genetic encoding scheme used for the stereoscopic particle matching  

2.2 Fitness estimation of individuals 

The fitness of the individuals is estimated by several kinds of 2-D and 3-D distance parameters 

based on the geometry of particle centroids and the relevant epipolar lines. 

2.2.1 Epipolar lines 

The only physical criterion, which is available for establishment of the stereo correspondence of 

the particles, is the geometric constraint of the epipolar line. As explained earlier, it has been the 
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important part of the fitness (object) function, and thus the major basis for the GA based particle 

pairing. Knowing the orientation parameters of the cameras from the calibration procedure and 

proceeding from a particle position, say (X1, Y1) in one image, an epipolar line in another image 

can be calculated, on which the corresponding point has to be found. The mathematical 

expression for 2-D and 3-D epipolar lines, shown in Fig. 2, can be all formulated from the 

mapping equations (1)-(4), representing the perspective transform [22].  

133132131141312111
XzaXyaXxaazayaxaX −−−+++=                                             (1) 

133132131242322211
YzaYyaYxaazayaxaY −−−+++=                                                (2) 

233232231141312112
XzbXybXxbbzbybxbX −−−+++=                                      (3) 

233232231242322212
YzbYybYxbbzbybxbY −−−+++=                                                    (4) 

where x, y and z are the physical-space 3-D coordinates of a particle centroid, X1 and Y1 are the 2-

D projection coordinates on the left-camera screen, whereas X2 and Y2 are those on the right 

camera screen. The two sets of matrix coefficients axx and bxx are respectively the left and right 

camera parameters, determined by a calibration process using a certain number of calibrated 

target points viewed by the same two cameras. Equations (1)-(4) can be rearranged and written as 

shown in equations (5)-(8) respectively. 

zXaayXaaxXaaaX )()()(
133131321213111141

−+−+−=−                                                          (5) 

zYaayYaaxYaaaY )()()(
133231322213121241

−+−+−=−                                                                (6) 

zXbbyXbbxXbbbX )()()(
233132321223111142

−+−+−=−                                                            (7) 

zYbbyYbbxYbbbY )()()(
233232322223121242

−+−+−=−                         (8) 

Above equations (5)-(8) can be written in short forms as shown in equations (9)-(12) 

respectively. 

4321
WzWyWxW =++                                                                                                                   (9) 

8765
WzWyWxW =++                                                                                                                 (10) 

1211109
WzWyWxW =++                                                                                                               (11) 

16151413
WzWyWxW =++                                                                                                              (12) 

where W1 = a11 – a31 X1, W2 = a12 – a32 X1, W3 = a13 – a33 X1 and W4 = X1 – a14. Similarly, it is 

easy to understand the equivalence of variables W5 to W16 in reference to equations (6)-(8) and 

(10)-(12). Now, equations (9) and (10) can be expressed as: 
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Substituting, in equations (13) and (14), we get: 

1817
WzWy +=                                                                                                                              (15) 

2019
WzWx +=                                                                                                                              (16) 

Substituting the value of x and y in equations (15) and (16) to equations (11) and (12), we get: 

181020912111710199
)( WWWWWzWWWWW −−=++                                                                         (17) 

18142013161517141913
)( WWWWWzWWWWW −−=++                                                                         (18) 

Equating and cross-multiplication of equations (17) and (18) yields: 

)()()()(
11171019918142013161517141913181020912

WWWWWWWWWWWWWWWWWWWW ++−−=++−−     (19) 

Now, from equations (7), (8), (11), (12) and (19), we get: 

)()()()(
2222 LLLLLLLL

UXRTYPSYRQXP +−−=+−−                                                              (20) 

where, 

PL = (1 + b31W20 + b32W18) 

QL = (b14 + b11W20 + b12W18) 

RL = (b31W19 + b32W17 + b33) 

SL = (b21W19 + b22W17 + b23) 

TL = (b24 + b21W20 + b22W18) and 

UL = (b11W19 + b12W17 + b13) 

Rearranging equation (20), we get: 

0
22

=++
iii

RYQXP                                                                                                                    (21) 

where  Pi = (PLSL – TLRL),     Qi = (-PLUL + QLRL)   and   Ri = (TLUL – QLSL). 

Equation (21) is the epipolar line, in the right frame, corresponding to the particle in the position 

(X1, Y1) of the left frame. To generalize the situation, (X1, Y1) is replaced by (Xi, Yi) in the above 

computations. Now, the normal distance of the epipolar line in right frame from the position (Xk, 

Yk), also in right frame, is given by the equation (22). 
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The value of dik, thus obtained, becomes a part of equation (23) (Section 2.2.2 Fitness function) 

for each k
th
 particle in the right frame from the epipolar line drawn in reference of each i

th
 particle 

of the left frame. The process goes similarly for calculating dki for each i
th
 particle in the left 

frame from the epipolar line drawn in reference of each k
th
 particle of the right frame. 
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Fig. 2: Epipolar lines (2-D and 3-D) 

2.2.2 Fitness functions 

In equations (1) - (4) in section 2.2.1, if either set of (X1, Y1) or (X2, Y2) is given, the other set of X 

and Y comes into a linear relation, providing an arithmetic equation of a 2-D epipolar line. And if 

the set of (X1, Y1) is given in the equations (1) and (2), then the coordinates x, y and z are 

interrelated as a 3-D epipolar line equation. So are the set of (X2, Y2) and the equations (3) and (4). 

Bearing these 2-D and 3-D epipolar distances in mind, the authors have tried in the present 

experiment four types of fitness functions. The first one given by equation (23) is defined as the 

total sum of 2-D normal distances between a reference particle and its pairing epipolar line in the 

same 2-D projection image. For more accuracy, this distance parameter is re-evaluated by 

addition of another 2-D epipolar line distance obtained from a backtracking pairing process, 

namely the distance between the relevant respective particle centroid and the epipolar line in the 

other projection image. To illustrate mathematically, let Ei(i = 1, 2, 3...N ) be the epipolar lines in 

the right frame corresponding to particles Pi(i = 1, 2, 3...N) in the left frame and Ek(k = 1, 2, 

3...N ) be the epipolar lines in the left frame corresponding to particles Pk(k = 1, 2, 3...N ) in the 

right frame. Let, dik be the distance of the particle Pk from Ei, and the dki likewise. Now, the 

genetic strategy is aimed for the minimization of the fitness function: F = (dik + dki).The second 

one given by equation (24) is defined as the total sum of the 3-D normal distances between two 

3-D epipolar lines of pairing particles. The third one given by equation (25) is the total sum of 

the square of the 2-D normal distances in the same re-evaluation scheme as in equation (23) and 

the fourth one given by equation (26) is the total sum of the square of the 3-D normal distances. 

However, as a result of a series of trial computations, the third and fourth fitness definitions, i.e., 

equations (25) and (26) have not demonstrated any noticeable improvement of pairing results if 

compared to the first and the second ones. So in the following sections, the genetic algorithm for 

particle pairing uses only the first and second fitness functions, i.e., equations (23) and (24). 

( )∑ +=+=
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namely the distance between the relevant respective particle centroid and the epipolar line in the 

other projection image. To illustrate mathematically, let Ei(i = 1, 2, 3...N ) be the epipolar lines in 

the right frame corresponding to particles Pi(i = 1, 2, 3...N) in the left frame and Ek(k = 1, 2, 

3...N ) be the epipolar lines in the left frame corresponding to particles Pk(k = 1, 2, 3...N ) in the 

right frame. Let, dik be the distance of the particle Pk from Ei, and the dki likewise. Now, the 

genetic strategy is aimed for the minimization of the fitness function: F = (dik + dki).The second 

one given by equation (24) is defined as the total sum of the 3-D normal distances between two 

3-D epipolar lines of pairing particles. The third one given by equation (25) is the total sum of 

the square of the 2-D normal distances in the same re-evaluation scheme as in equation (23) and 

the fourth one given by equation (26) is the total sum of the square of the 3-D normal distances. 

However, as a result of a series of trial computations, the third and fourth fitness definitions, i.e., 

equations (25) and (26) have not demonstrated any noticeable improvement of pairing results if 

compared to the first and the second ones. So in the following sections, the genetic algorithm for 

particle pairing uses only the first and second fitness functions, i.e., equations (23) and (24). 
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2.3 Genetic Operations 

After the fitness estimation of individuals, the first operation is the selection and reproduction of 

better-fit individuals. As a general principle of the genetic algorithm, a better-fit individual must 

have more probability of being reproduced in the following generation. This is a basic rule of 

selection and reproduction. The next genetic operation is crossover of randomly selected two 

individuals. Either of the two gene strings picked up from two randomly selected individuals is 

crossed over at the same randomly determined string position. This operation provides the first 

opportunity for the individuals to have new combinations of particle ID’s between the left- and 

right-camera frames. And finally, the last operation is mutation, in which two randomly selected 

gene codes in a single chromosome of a randomly selected individual are exchanged at a 

prescribed rate. This is the second chance for the individuals to have new combinations of 

particle ID’s. Unlike most of the conventional genetic operations, the present algorithm uses 

some new ideas that are introduced in addition to the basic genetic operations with a view to 

accelerate the computation. 

Relating to the genetic encoding scheme shown in Fig.1, the selection and reproduction are the 

operations done on the individual basis without changing the combinations of particle IDs in the 

two gene strings. But the crossover and mutation are operated in only one of the two gene strings 

and, therefore, sure to change the combinations of particle IDs.  

2.3.1 Selection and reproduction  

The present study employs the ranking selection (more precisely, the linear or exponential 

ranking selection) method. In addition, the present method adopts a widely-used option known as 

an elitist preserving selection, in which the best-fit ever-generated individual is unconditionally 

reproduced in the next generation. 

2.3.2 Sort of gene strings 

This one, not included in the conventional genetic operations, is a unique aspect of the present 

genetic algorithm. At each generation, the two gene strings in the best-fit individual (or more 

than two best-fit individuals) are sorted simultaneously according to the fitness index of each 

gene pair. This simultaneous sort operation retains any combination of particle IDs between the 

first and second gene strings. 

2.3.3 Crossover 

Crossover is always a unique opportunity in which two gene strings coming from either one of 

the two chromosomes in two randomly-selected individuals is crossed over with each other. In 

the present study, a single point partially matched crossover method as shown in Fig. 3 is used. 
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Fig. 3: Partially matched crossover (Single-Point) 

2.3.4 Mutation 

In this mutation operation, two randomly selected gene codes in either of the two gene strings are 

exchanged in a given number of randomly selected individuals. This is depicted clearly in Fig. 4. 

 

 

 

Fig. 4: Mutation based on random gene-exchange 

3. Camera Calibration 

The sets axx and bxx in equations (1)-(4) are the camera parameters for the left and right camera 

and are the essential components to determine the equation of the epipolar line as mentioned 

above. These parameters measure the position and orientation of the camera with respect to a 

world coordinate system. The solution to determine these parameters is formulated as shown in 

equation (27). This representation is same as the representations made in equations (1)-(2). This 

is the case for the determination of the camera parameters of the left camera. Process goes similar 

to the computations of the right camera parameters too. An over determined set of linear 

equations is obtained by configuring equation (27) for each calibration target. Minimum numbers 

of 6 calibration targets are required to solve the 11 unknown calibration parameters. Suppose 

equation (27) is expressed as in the equation (28) form replacing the components from left to 

right by Jc, Mc, and Nc respectively then equation (28) can be solved for calibration parameter 

matrix Nc by using linear least-squares technique as the pseudo-inverse [2, 23] as in equation (29). 

parent 1 

parent 2 

7     1     2     8     0     5     6     9     3     4 

3     5     2     1     7     8     4     0     9     6 

7     1     2     8     0     8     4     0     9     6 

3     5     2     1     7     5     6     9     3     4 

1 2 2 1 

1 2 1 2 

child 1 

child 2 

7     1     2     8     0     3     4     5     9     6 

3     5     2     1     7     0     6     9     8     4 

9     2     0     5     7     8     3     6     4     1 

9     2     3     5     1     8     0     6     4     7 
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4. Experimental Results  

The GA particle-matching algorithm is tested by using the 3-D PIV Standard Images [18, 19] 

available from the Visualization Society of Japan. These images are composed of various sets of 

synthetic time-series particle images generated from DNS (Direct Numerical Simulation) results 

of a 3-D impinging jet in a square cavity and 6 sets of them are stereoscopic images for with 

different portions of the flow field and/or different viewing angles of the cameras. One of the 

advantages of these standard images is that the datasets come with text files of the original 

particle coordinates, so that one can compare the analysis results of particle matching with the 

correct data. In the present study, the matching results are presented for four stereoscopic 

particles image sets namely #351, #352, #371 and #377 out of six, because these four are 

especially suitable for basic testing of every 3-D PIV or PTV system. Sample frames for each of 

these image series are shown in Fig. 5 and Table 1 gives the summary of specifications of these 

Standard Images [18, 19]. The first two images sets (#351 and #352) represent the same portion 

of the flow field with same viewing angles of the cameras. The only difference between the two 

is the number of particles distributed in the view field. For the first three series (#351, #352 and 

#371), the left and right (stereoscopic) cameras are fixed symmetrically with their optical axes in 

plane. The symmetry comes from the incidence angle of ±30° of the two camera axes with 

respect to the x-axis. In the first two series (#351 and #352), the plane of the two camera axes is 

parallel to the x-y plane while in the third one (#371), the camera axes have also a yaw angles of 

-10° with respect to the x-y plane. For the #377 series, the cameras are in more complex optical 

arrangement as specified in Table 1. In any of the four series, in order to simulate particle 

refraction effects in really experimental environments, the use of cylindrical volume illumination 

and water refractive index of 1.33 are taken into account.  

For determining camera parameters, pair of (left and right) calibration images is provided for 

these series of particle images. In case of image series #351, #352 and #377, there are 27 
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stationary marker particles whereas in the case of image series #371, there are 125 stationary 

marker particles. The marker particles used for the calibration purposes are shown in Fig. 6. As 

#351 and #352 image series correspond to the same optical conditions, the calibration marker 

particles are common for both of these series. 

                                                

   (a) Left frame #351                                                                      (b) Right frame #351 

                                                

    (c) Left frame #352                                                                     (d) Right frame #352 

                                                

      (e) Left frame #371                                                                    (f) Right frame #371 
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stationary marker particles whereas in the case of image series #371, there are 125 stationary 

marker particles. The marker particles used for the calibration purposes are shown in Fig. 6. As 

#351 and #352 image series correspond to the same optical conditions, the calibration marker 

particles are common for both of these series. 

                                                

   (a) Left frame #351                                                                      (b) Right frame #351 

                                                

    (c) Left frame #352                                                                     (d) Right frame #352 

                                                

      (e) Left frame #371                                                                    (f) Right frame #371 

                                                

    (g) Left frame #377                                                                   (h) Right frame #377 

Fig. 5: Standard images (Left and Right frames) 

Table 1 : Summary of different 3-D PIV Standard Images 

Series # / Frame # 352 / 0000 351 / 0000 371 / 0000 377 / 0000 

Number of existing particles 372 2092 366 939 

Mean particle diameter 5 pix 5 pix 5 pix 5 pix 

Standard deviation of diameter 2 pix 2 pix 2 pix 2 pix 

Minimum particle diameter 1 pix 1 pix 1 pix 1 pix 

Volume of visualized flow (in situ) 2cm
3
 2cm

3
 1cm

3
 0.5cm

3
 

Maximum flow rate (in situ) 12 cm/sec 12 cm/sec 12 cm/sec 12 cm/sec 

Refraction index 1.33 1.33 1.33 1.33 

Number of calibr. marker particles 27 27 125 27 

Left 

camera 

Distance to origin center 20 cm 20 cm 20 cm 11.5 cm 

Inclination from x-axis -30 deg -30 deg -30 deg -29.9 deg 

Inclination from y-axis 0 deg 0 deg -10 deg -45 deg 

Inclination from z-axis 0 deg 0 deg 0 deg 16.1 deg 

Right 

camera 

Distance to origin center 20 cm 20 cm 20 cm 11.5 cm 

Inclination from x-axis 30 deg 30 deg 30 deg 0 deg 

Inclination from y-axis 0 deg 0 deg -10 deg -90 deg 

Inclination from z-axis 0 deg 0 deg 0 deg 30 deg 
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  (a) Left frame #351, #352                                                      (b) Right frame #351, #352 

                                                

       (c) Left frame #371                                                                  (d) Right frame #371 

                                                

       (e) Left frame #377                                                                (f) Right frame #377 

Fig. 6: Left and Right image frames for calibration  

The stereoscopic particle matching results using the particle coordinates data of these sets of 

images are summarized in Table 2. This table includes the results for both varied seeding 

densities as well as the different optical aspects of the stereoscopic particle velocimetry with or 

without incidence, yaw, and roll angles of the cameras as detailed in Table 1. The abbreviation 
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Fig. 6: Left and Right image frames for calibration  

The stereoscopic particle matching results using the particle coordinates data of these sets of 

images are summarized in Table 2. This table includes the results for both varied seeding 

densities as well as the different optical aspects of the stereoscopic particle velocimetry with or 

without incidence, yaw, and roll angles of the cameras as detailed in Table 1. The abbreviation 

p/p in this table stands for “dataset with only perfect pairs”, which is generated with an additional 

data processing by discarding all the loss-of-pair particles. By contrast, the datasets without 

abbreviation p/p include a certain degree of loss-of-pair particles that were present in the original 

data. Two different numbers of particles for this type of datasets in Table 2 reflects this 

background. The “correct pair rate” in both these cases means the ratio of total number of 

correctly matched particles to the total number of matchable particles. The results obtained with 

conventional method of pairing, i.e., without using GA are also presented side by side in Table 2. 

The results obtained with conventional method of pairing (without using GA) are also presented 

side by side in Table 2. This results using conventional method (particle pairing without GA) 

come from particle matching using a conventional epipolar-line proximity analysis based on 

Nishino et al. [10] where the particles i and k which are able to produce the minimum value of dik 

+ dki are considered as perfect pairs.   

Table 2 : Results of stereoscopic particle pairing 

Series # / 

Frame # 

Particle pairing without GA 

(Conventional method) 
Particle pairing with GA  

Number of 

existing particle 

pairs 

Number of 

correct 

pairs 

Correct 

pair rate 

Number of 

existing particle 

pairs 

Number of 

correct 

pairs 

Correct 

pair rate 

#351/000 1546 (p/p) 1253 81.04 % 1546 (p/p) 1317 85.19 % 

#351/000 (1817 / 1818) 1224 79.17 % (1817 / 1818) 1236 79.94 % 

#351/001 1526 (p/p) 1249 81.84 % 1526 (p/p) 1298 85.05 % 

#351/001 (1801 / 1802) 1228 80.47 % (1801 / 1802) 1239 81.19 % 

#352/000 283 (p/p) 266 93.99 % 283 (p/p) 275 97.17 % 

#352/000 (325 / 328) 264 93.28 % (325 / 328) 267 94.35 % 

#352/001 277 (p/p) 259 92.83 % 277 (p/p) 269 97.11% 

#352/001 (323 / 329) 257 92.11 % (323 / 329) 263 94.26 % 

#371/000 157 (p/p) 141 89.80 % 157 (p/p) 147 93.63 % 

#371/000 (267 / 214) 138 87.89 % (267 / 214) 140 89.17 % 

#371/001 160 (p/p) 145 90.62 % 160 (p/p) 152 95.0 % 

#371/001 (265 / 218) 141 88.12 % (265 / 218) 145 90.63 % 

#377/000 352 (p/p) 265 75.28 % 352 (p/p) 279 79.26 % 

#377/000 (571 / 563) 238 67.61 % (571 / 563) 255 72.44 % 

#377/001 352 (p/p) 269 76.42 % 352 (p/p) 282 80.11 % 

#377/001 (573 / 569) 248 70.45 % (573 / 569) 258 73.29 % 
 

The values of the important GA parameters used for the stereoscopic particle matching are as 

follows: 
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Number of individuals = 5 (for Image Series # 352, #371 and # 377) and 10 (for Image 

Series # 351) 

Number of iterations = 5000 (for Image Series # 352, #371 and # 377) and 10000 (for 

Image Series # 351) 

Selection rate = 0.2 

Crossover rate = 0.2 

Mutation rate = 0.05 

From Table 2, it is recognized that the correct pair rate is more or less increased with the use of 

the genetic algorithm, regardless of which series of image datasets and frames are used. In the 

case of #351, the number density of particles is almost 6 times as much as #352 but nonetheless, 

the correct pair rate amounts to 85% for the perfect-pair particle dataset. This indicates that the 

genetic algorithm particle matching works rather stably even in application to high-density 

particle images and this is also an indicative of an increased effectiveness of the GA-based 

stereoscopic particle pairing for rather densely seeded particle images. The maximal pair rate of 

97.0 % (perfect-pair particle dataset of #352) may be considered as a limit of the stereoscopic 

particle matching using two-camera arrangement and for more accuracy, assistance by the third 

and/or fourth camera will be needed. Finally, Fig. 7 shows the comparison between the 3-D 

locations of the detected particles using the current GA algorithm and the correct 3-D locations 

of the particles, which is obtained from the original data sets. This figure explicitly shows the 

effectiveness as well as the accuracy of the current GA algorithm. 

Another merit of this GA approach is that the performance is considerably stable regardless of 

the optical conditions of particle imaging. Even with or without incidence, yaw and roll angles of 

the two stereoscopic cameras, the correct pairing results are maintained at a constantly high level. 

This is certainly important when the stereoscopic PTV has to be employed in many industrial 

applications, where the positions of cameras and of laser light units are more or less restricted. 

                  

(a) Particle locations for Series #352/000 (pp)          (b) Particle locations for Series #352/001 (pp) 

      (Black dot stands for particles detected                    (Black dot stands for particles detected 

       using GA and Red cross stands for                            using GA and Red cross stands for 

       original particles from data sets)                                original particles from data sets) 

Fig. 7: Comparison of 3-D particle locations for image series #352 
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Another merit of this GA approach is that the performance is considerably stable regardless of 
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Fig. 7: Comparison of 3-D particle locations for image series #352 

5. Conclusion 

The genetic algorithm was successfully applied to the 3-D stereoscopic particle pairing strategy 

and was confirmed that the genetic algorithm was an effective strategy for the particle pairing of 

the 3-D stereoscopic particle tracking velocimetry. The pairing problem is modeled as an 

optimization problem accompanied by physical constraint conditions so as to satisfy the epipolar 

geometry of the particles and uniqueness of the match pairs. The test results using synthetic 

particle images (the 3-D PIV Standard Images) showed an increment in the number of correct 

particle pairs between the two stereoscopic image frames, if compared to those of the 

conventional method based on a simple nearest-neighbor epipolar line analysis. On the basis of 

these facts, the performance of the proposed GA algorithm approach is better than the nearest-

neighbor epipolar line analysis based conventional particle pairing methods for steoroscopic 3-D 

PTV. 
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