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Abstract  

The maximum principle plays key role in the theory and application of a wide class of real linear partial differential 
equations. In this paper, we introduce ‘Maximum principle and its discrete version’ for the study of second-order parabolic 
equations, especially for the one-dimensional heat equation. We also give a short  introduction of formation of grid as well as 
finite difference schemes and a short prove of the  ‘Discrete Maximum principle’ by using different schemes of heat 
equation.  
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__________________________________________________________________________________ 

1. Introduction 

In the early 1800s, J. Fourier began a mathematical study of heat equation. The heat equation is  

u� − ∆u = 0 

And non-homogeneous heat equation is 

u� − ∆u = f 
at point x in time t and u:�U� × �0,∞� → ℝ, u = u(x, t� and the given  function f → U� × �0,∞� →
ℝ and�∆= � u��������  is Laplacian [3].  

If x ∈ U�and�U ⊂ ℝ, then one-dimensional heat equation is 

u�(x, t� = b�u��(x, t� for�b > 0 … … … (1) 

By using the Fourier transform and Fourier inversion formula the solution of one-dimensional heat 
equation  

u�(x, t� = b�u��(x, t� for�b > 0, x�ϵ�ℝ, t� ≥ 0 

u(x, 0� = u�(x� 
is 

u(x, t� = 1
�4πbt � e�(����

�
���

�

��
u�(y�dy 

Where u(x, t� gives the temperature at time t and point x [7]. 

2. Finite Difference Grids and Schemes  

The close solution domain D(x, t� is xt-plane for a two dimensional equilibrium problem as shown in 
figure (1). The solution domain must be covered by two dimensional grids of lines, called the finite 
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difference grid. The finite difference solution to the PDE is obtained at the intersections of these grid 
lines. 

Let these grid lines be equally spaced lines perpendicular to the x and t directions having uniform 
spacing h and k. Discretize horizontally into m equal intervals h and vertically into n equal intervals k 
where h and k are positive numbers, n and m are arbitrary integers. Set of grid points are denoted 
by�x=, t�� � �mh, nk).  On the grid point, �x=, t�� a continuous function u�x, t� which is varying on 
�x, t� is denoted by u=� . A grid function v defined by on the grid point �x=, t�� is denoted by v=� . The 
value of functions u and v are the same on the grid points [5,7]. 

 

Fig1 The Finite Difference Grid 

2.1 Finite Difference Method 

The finite difference method is one of several techniques for obtaining numerical solution to PDEs. If 
we replace partial derivatives of PDEs by finite difference by using Taylor’s series, we obtain the 
finite difference schemes of PDEs. Aim of finite difference schemes is to approximate the values of 
the continuous function u�x, t� on a set of grid points in xt-plane. The finite difference method was 
first developed by A. Thom in 1920s under the title ‘The method of square’ to solve non-linear 
hydrodynamic equations. The finite difference method is one of the numerical approximation methods 
that solve finite difference schemes by using iteration methods or by using computational algorithm to 
obtain an approximate solution of the PDE. 

2.2 Some important finite difference schemes of heat equation: 

The forward and backward difference operator are defined by 

δAv= � BCDE8BC
F and  δ8v= � BC8BC0E

F respectively.  

The difference operator is defined by  

δ) �  
G � δAv= H δ8v=� (For first-order derivative) 

δGv= � IJD8 J0
F K �v=� � BCDE8GBCA BC0E

F3 (For second-order derivative) 

Consider each grid point separated by a distance h along x-direction. By Taylor’s series expansion of 
	 u�x H h, t�and	u�u � h, t� and adding both of them, we obtain 

∂G
∂xG u�x, t� � u �x H h, t� H u�x � h, t� � 2u�x, t�

hG H o�hG�
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This is called central difference approximation. 

On the grid point, u=� � v=� so that for the construction of finite difference schemes we use grid 
function v by replacing u because schemes for solving PDEs, we are restricted to grid point. 

2.3 The forward-time central-space scheme: 
The forward-time central-space scheme for the heat equation (1) is 

u�x=, t� H k� � u	�x=, u��
k � b	 u�x= H h, t�� � 2u	�x=, u�� H u�x= � h, t��

hG

⇒ u=�A � u=�
k � b	 u=A � � 2u=� H u=8 �

hG
Since on grid points u=� � v=� , we obtain 

v=�A � v=�
k � b	 v=A � � 2v=� H v=8 �

hG
Similarly, 

2.4 The backward-time and central-space scheme: 

The backward-time and central-space scheme for the equation (1) is  
v=�A � v=�

k � b	 v=A �A � 2v=�A H v=8 �A 

hG
2.5 The Crank-Nicholson scheme: 

The Crank-Nicholson scheme for the heat equation (1) is 
BCODE8BCO

P = Q
G
BCDEODE 8GBCODEA BC0EODE

F3 + Q
G
BCDEO 8GBCO A BC0EO

F3

Where u�is approximated with backward time-difference and u�� is approximated with the average of 
the central difference schemes evaluated at the current and the previous time steps. 

Discrete Maximum Principle 

The usefulness of maximum principle is restricted to second-order equation because second-order 
derivatives of a function give information of the function at extrema. The maximum principle and its 
discrete version are used in pure as well as applied mathematics to find the maximum and minimum 
values of the continuous as well as discrete functions. It is an important property of parabolic 
equations used to deduce a variety of results such as uniqueness, boundedness comparison principles. 
The maximum and minimum values of the function lie on the boundary of any domain, for example , 
in a steady temperature distribution, both hottest and coldest temperature occurs at the boundary of 
the region, as shown in figure (2). 

 

Fig 2 Steady Temperature Distribution 
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The discrete function v�� plays the same role on a region as the continuous function u(t, x� plays role 
to find the maximum and minimum values i.e. the discrete maximum principle is used to find the 
maximum and minimum values of the discrete functions. Hence, discrete maximum principle is the 
discrete counterpart of the maximum principle [1,2]. 

Theorem (Maximum Principle) 

Let  Q�: 0� ≤ x� ≤ l, 0 ≤ t� ≤ T be a closed region and Γ�: Boundary of Q� i.e. x = 0, t = 0�or�x = l,
but t ≠ T. Let u(x, t� be a solution of  

u� = α�u��, (x, t�ϵQ�
which is continuous in the closed region Q�. The maximum and minimum values of u(x, t� are on the 
boundary  Γ� (Initial line t = 0 at the points on the boundary x = 0�or�x = l) [8] 

Theorem (Discrete Maximum Principle) 

i. The forward-time central-space scheme (Explicit) for the heat equation  

u�(x, t� = b�u��(x, t� for�b > 0 

is 

���������
� = b� ����� ����� � �����

�� … … … (2) 

Show that  

max�  v���� ≤ max�  v�� for the CFL condition μ = � ���� ≤
�
� [7] 

ii. The backward-time central-space scheme (Implicit) for the heat equation  

u�(x, t� = b�u��(x, t� for�b > 0 

is 

���������
� = b� ������� �������� �������

�� … … … (3) 

Show that  

max�  v���� ≤ max�  v�� for allμ = � ���� > 0 [7] 

iii. The Crank-Nicolson Implicit scheme  for the heat equation  

u�(x, t� = b�u��(x, t� for�b > 0 

is 

���������
� = �

�
������� �������� �������

�� + �
�
����� ����� � �����

�� … … … (4) 

Show that  

max�  v���� ≤ max�  v�� for all 0 <μ = � ���� ≤ 1 [7] 

Proof: 

i. The forward-time central-space explicit scheme (2) can be written as 
v���� = v�� � μ (v���� − 2v�� � v���� �whereμ = � ����

⇒ v���� = μ v���� � μ v���� � (1 − 2μ�v�� … … … (5) 
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For m = 1,2,3,…, M - 1  and n= 0, 1, 2, 3, ……, to final computing time. 

We have, CFL condition   μ ≤ �
�i.e1 − 2μ� ≥ 0. 

Now from, we have 

v���� ≤ μ v���� � μ v���� � (1 − 2μ�v�� 
≤ max�  v�� � μ�max�  v�� � ( 1 − 2μ�max�  v��

Where i is specific number. 

v���� ≤ max�  v��
It holds for m when v���� reaches maximum. 
∴ max� �  v���� ≤ max�  v�� for all  m=1, 2, 3, … … … , M – 1 

which is discrete maximum principle. 
ii. The back-time central-space explicit scheme (3) can be written as 

v���� = v�� � μ (v������ − 2v����� � v������ � where μ = � ����
⇒(1 − 2μ� v���� = v�� � μ v������ � μ v������  … … (6) 
form = 1,2,3,…, M - 1  and n = 0, 1, 2, 3, ……, to final computing time. 

Sinceμ < 0, we hav 

�(1 � 2μ�v���� ≤ v��  � μ�v������ � μ v������ 

≤ max�  v�� � μ�max�  v���� � μmax�  v����
Where i is specific number. Then 

v���� ≤ max�  v��
It holds for m when v���� reaches maximum. 

∴ max� �  v���� ≤ max�  v�� for all  m=1, 2, 3, … … … , M – 1 

which is discrete maximum principle. 

The proof of (iii) is similar to (ii). 

3. Conclusion 

In mathematical modeling of the real world problems, non-linear or non-homogeneous PDEs or 
mixed type boundary conditions as well as time dependent boundary conditions, we use numerical 
method by discretizing the PDEs into finite difference schemes to get approximate solution with 
minimum error. The discrete maximum principle is useful in the resulting matrix equations, which 
approximate parabolic boundary value problem by employing the finite difference method. The 
discrete maximum principle is applied not only to linear boundary value problems, but also to non-
linear boundary value problem in scientific and engineering disciplines. 

Hence, we conclude that in the various PDEs and real world problems, numerical solution methods 
are better in comparison to the explicit solution methods and the discrete maximum principle is very 
useful in non-linear or non-homogeneous PDEs to find the extreme values on the boundary of the 
domain.   
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