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INTRODUCTION

A major part of  the global health problem, i.e. 43%, is 
contributed by the infectious diseases according to the 
original report of  the World Health Organization (WHO).1 

The susceptibility and resistance to particular microbes 
leading to infectious disease; is well determined by the 
complex combination of  environmental, pathogen and 
host genetic factors. This is supported by the various 
studies that have now mapped and identified relevant genes 
using a variety of  both family based and population based 
approaches; but only a small fraction of  these have been 
identified so far.

In this era of  emerging and re emerging infectious 
diseases; sometimes it is better to start with the golden 
pages of  the immune system that influences resistance and 
susceptibility to infectious diseases. As the work continues, 
the Major Histocompatibility Complex (MHC) or Human 
Leukocyte Antigen (HLA) system is the most intensively 
studied of  all genetic systems because of  its influence to 
many important traits, including resistance to infectious 
diseases, autoimmunity,2-7 immunological self  or nonself  

compatibility,8 spontaneous abortion,9 odour and mating 
preferences.10,11 Thus, the MHC plays such a central role 
in the immune system. These complementary approaches 
for association in candidate genes is the most common 
approach using case control studies.

The mouse genetics has contributed to mapping and 
identification of  a few genes. Finally, clues as to what genes 
affect response to infection in humans are being found in 
the analysis of  outcome of  infection in model organisms 
such as mice or drosophila.12-14

More recent, the use of  microarray technology has improved 
in the identification of  novel candidate genes on the basis of  
differential expression, which may eliminate the possibility 
of  false positive associations. This is understandable 
in the light of  the evolutionary pressure so that we are 
equipped to face the multitude of  infectious challenges. 
Infectious diseases are a major selective pressure;15-18 and 
genes involved in the immune response are the most 
numerous and diverse in the human genome;19 reflecting 
the evolutionary advantages of  a diverse immunological 
response to a wide range of  infectious pathogens.20
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Moreover, family based approaches have also become 
more widely reported to look for linkage to infectious 
disease in a relatively small number of  infectious diseases 
thus far.21-27 Other linkage studies to identify genes causing 
rare, monogenic susceptibility phenotypes have been 
reported, though the causative variation identified are rare 
mutations rather than polymorphisms and the identified 
genes rarely, if  ever, relevant to common variation in 
susceptibility.28,29

Thus, it is an area of  intense interest that has been 
mainly focused on susceptibility to malaria, human 
immunodeficiency virus (HIV)/acquired immunodeficiency 
disease syndrome (AIDS) and mycobacterial infection; but 
other bacterial, viral and parasitic diseases are receiving 
increasing attention. The emerging picture is of  highly 
polygenic diseases. Moreover, there is a need to review 
the importance of  this system and present in a context so 
that the other genius explorers become inspire and get the 
light of  knowledge to face the infectious world at present.

Early investigation
The exploration of  MHC genes started through research 
on tissue rejection using domestic strains of  mice and 
rabbits. In 1916,30 Little and Tyzzer performed tumour 
transplants between different strains of  mice, and found 
that tumours could be transplanted among some strains 
of  mice, but rejected among others. Research on tissue 
rejection continued and, eleven years later, it was discovered 
that tissue transplants were not rejected if  the donor and 
the recipient were identical twins.31

Studies in mice by Peter Gorer and George Snell32 had 
shown that a histocompatibility system existed, and that 
it controlled whether tissues could be grafted from one 
animal to another. It was called the “H-2 system” and 
there was general agreement that a similar system probably 
existed in humans.33-38

The challenge then was to identify this human 
histocompatibility system. The detection of  the red cells’ 
antigen was well known after discovery of  the ABO system. 
Researchers then turned to white cells as the best avenue 
for isolating the factors of  histocompatibility in humans. 
Peter Miescher33 and others used similar techniques of  red 
cells; mainly agglutination, to begin studies on leukocyte 
antigens. Jean Dausset,34 working at a blood bank in France, 
found antibodies in three patients that reacted similarly. 
The discovery led him to postulate the first leukocyte 
antigen group, which he called MAC. Johannes Van 
Rood; who was also working at a blood bank in Holland, 
studied leukoagglutinating antibodies in pregnant women, 
searching for specificities.35 From the outset, the problem 
was the unreliability of  the agglutination test because 

of  difficulties in handling granulocytes. To resolve the 
variability problem, Van Rood came up with the idea of  
using computers to sort out complex reactions, resulting 
in the identification of  the 4a and 4b specificities.36 At 
about the same time, Rose Payne at Stanford also working 
on leukoagglutinating antibodies in pregnant women37 
collaborated with Walter and Julia Bodmer to find two 
antigenic groups, which they called LA1 and LA2.38

In order to agree on methods used for tissue typing, various 
histocompatibility workshops were performed in which the 
liabilities of  leukoagglutination test, mixed agglutination test, 
complement fixation test, indirect antiglobulin consumption, 
mixed lymphocyte culture and the microlymphocyte 
cytotoxicity test were compared.39-42 During these workshops, 
several leukocyte antigens were identified and made it 
possible to see for the first time that a single system or genetic 
locus was producing all these reactions.

After the workshop, a WHO conference was held to decide 
on nomenclature that was the topic of  much confusion 
and till now also.43 Amos summarized the wrangles in the 
committee,44 the first antigen of  Dausset came to be called 
HLA2; and Payne and Bodmer’s LA1 became HLA1. Thus, 
the mouse MHC is sometimes known as “H-2”, which 
originated by combining Snell’s ‘H genes’ with Gorer’s 
‘antigen II’, and the human MHC is also called ‘HLA’ or 
Human Leukocyte Antigen. It is periodically evaluated and 
revised by the WHO nomenclature committee.

Flemming Kissmeyer-Nielsen provided evidence that 
there were at least two parts of  the HLA system: The A 
and B loci.45 At the fourth workshop, at UCLA in 1970, 
the microtoxicity test46 was adopted as the international 
standard.

Until the 1970s, the immunological functions of  the 
MHC remained a mystery. The mystery reveals when both 
Zinkernagel and Doherty found that T cell responses 
were restricted, not only to the antigen, but also to MHC 
molecules in 1975.47-52 Later on, the major applications of  
HLA for anthropological studies,53 paternity testing,54 etc. 
were introduced.

HLA genetic architecture
The human MHC or HLA system is a large chromosomal 
region of  about 3,600kb that is located on 6p21.31 region 
of  short arm of  human chromosome 6 (Figure 1) with 
over 200 allelic variants.55,56 Historically, the MHC has been 
divided into three regions: Class II (centromeric), Class III 
and Class I (telomeric).57

The human map reveals clusters of  genes grouped 
roughly into a MHC Class I region of  2,000 kb, a MHC 
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Class II region of  1,000 kb and a MHC Class III region 
of  1,000 kb. The MHC regions Class I and Class II 
genes control all specific immune responses, but it 
also contains many other genes that influence growth, 
development, reproduction, odour and olfaction. 
Among the MHC loci that control the immune system 
are Class I and Class II MHC loci (classical MHC genes), 
which are the most highly polymorphic genes known 
among vertebrates. It is also highly polygenic implying 
that it contains several different MHC Class I and MHC 
Class II genes, so that every individual possesses a set 
of  MHC molecules with different ranges of  peptide 
binding specificities.

MHC Class I α chain gene include HLA-A, HLA-B, HLA-C 
(classical Ia) and HLA-E, HLA-F, HLA-G (non classical Ib) 
and are located at telomeric side (Figure 2). MHC Class II 
α and β chains genes (HLA-D); designated with three letter 
code (e.g., HLA-DRB) indicates Class D, family (M, O, P, Q 
or R) and chain (α or β), are clustered at centromeric end. 
Between DMB and DOB genes lie LMP (low molecular 

weight protein) genes and TAP (transporter associated with 
antigen processing) genes.

LMP and TAP genes encode molecules that are involved 
in peptide generation in the cytosol and peptide transport 

Figure 1: Diagrammatic representation showing the location of the 
MHC genes on chromosome 6

Figure 2: Complete gene map of the MHC reference sequence. A 
complete picture of all the genes now annotated for the MHC is provided 
at http://www.nature.com/nrg/journal/v5/n12/poster/MHCmap
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across the endoplasmic reticulum (ER) respectively. The 
classical Class II region is particularly notable because 
almost all of  the genes are of  immune function, viz. 
Class II A and B genes, LMPs, TAPs and TAPBP in the 
extended Class II region.58 Therefore, these LMP and TAP 
genes are the mainly targeted genes for its association with 
infectious diseases. LMP2 and LMP7 encode interferon 
(IFN) γ inducible subunits of  the immunoproteosome, 
which degrade ubiquitin tagged cytoplasmic proteins into 
peptides that are especially suited for presentation by MHC 
Class I molecules.59,60 TAP1 and TAP2 encode subunits of  
an IFN γ inducible heterodimer that binds peptides in the 
cytoplasm and transports them into the ER where they can 
be loaded into nascent MHC Class I molecules.60

The Class III region does not encode HLA molecules, 
but contains genes for complement components (C2, C4, 
factor B), 21 hydroxylase, tumour necrosis factors (TNFs) 
and some others.61

A set of  more than seven genes involved in inflammation, 
including three members of  the tumour necrosis factor 
(TNF) superfamily, within the Class III region is sometimes 
specified as the Class IV region.62

Structure of MHC
The structure of  MHC molecules has been revealed by 
X-ray crystallography. The Class I molecules consist of  
extracellular glycosylated invariant β2 microglobulin (β2m) 
heavy chains that are noncovalently bind to the three 
extracellular domains (α1, α2 and α3), a transmembrane 
region and an intracytoplasmic domain. The α1 and α2 
domains contain variable amino acid sequences, and these 
domains determine the antigenic specificities of  the HLA 
Class I molecules. The α3 and β2m domains together form 
immunoglobulin constant domain like folds.63

The products of  the Class II genes DR, DP and DQ are 
heterodimers of  two noncovalently associated glycosylated 
polypeptide chains; α and β. An extracellular portion 
composed of  two domains (α1 and α2, or β1 and β2) is 
anchored on the membrane by a short transmembrane 
region and an intracytoplasmic domain. Polymorphisms 
of  Class II molecules occur in the first amino terminal β1 
domain of  DRB1, DPB1 and DQB1 gene products.64,65

As the further studies go on; the MHC genes follow 
Mendel segregation (Figure 3) during transmission and 
allelic variant is expressed in a codominant mode. The set 
of  MHC alleles present in each chromosome of  the pair 
is denominated haplotype. The probability of  a sibling 
having the same MHC haplotype as the other is 25%, 
different haplotypes is 25% and 50% are shared for only 
one haplotype.66

Moreover, there is a fact that occurs in HLA genes called 
linkage disequilibrium which denotes that certain alleles 
occur together with a greater frequency than would be 
expected by chance (non random gametic association). 
Variations in the expected combinations of  alleles in 
the population, more often or less often than would be 
expected from a random formation of  haplotypes from 
alleles, could be related to linkage disequilibrium.

MHC diversity67

Many evidences indicate that MHC polymorphisms are 
maintained by natural selection according to Apanius V, 
Penn D, Slev PR, Ruff  LR and Potts WK works as follows:
1. High number of  alleles.
2. Uniform allelic frequencies.
3. Deficiencies of  homozygotes.
4. Linkage disequilibrium among loci.
5. High nonsynonymous substitution rates at the antigen 

binding site codons.
6. Ancient allelic lineages (transpecies evolution).
7. Disassortative mating preferences (sexual selection).

HLA and human immunodeficiency virus (HIV) 
infection/acquired immunodeficiency syndrome (AIDS)
The HIVs (HIV 1 and HIV 2) are the greatest challenge 
to public health in modern times. They are relatively the 
recent human pathogens that continue to evolve rapidly. 
The HLA and HIV data are among the most convincing 
and intriguing in human infection and probably offer the 
most immediate prospect of  harnessing genetic association 
studies to develop novel interventions. In addition to 
a number of  associations between HLA and clinical 
phenotypes; and their response to treatment, these data 
also demonstrate the profound effects of  HLA restriction 

Figure 3: Mendelian inheritance of MHC haplotypes demonstrated in 
a family study. MHC haplotypes and genotypes can be inferred from 
phenotype data in an informative family study as illustrated. E.g. The 
father’s phenotype is HLA-A1, 3; B7, 8 and DR15, 17. From the family 
study, his genotype is A1, B8, DR17 (a) and A3, B7, DR15 (b) and the 
maternal HLA haplotypes are A2, B44, DR4 (c) and A29, B44, DR7 (d)
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on HIV variants that elude immunological control. There 
are studies on HIV/HLA that provide mechanistic insights 
into the interaction of  HLA molecules and the natural killer 
(NK) cell receptors.

The virologic and immunologic outcomes in patients 
with HIV infection can be highly variable; with only a 
small number of  individuals capable of  controlling HIV 
replication without therapy.67 The control of  HIV infection 
relies on HLA restricted cytotoxic T cell lymphocytes (CTLs) 
responses, which exert a strong inhibitory effect on viral 
replication and growth.68 Selection for amino acid sequence 
variants at HIV epitopes may lead to immunological escape 
by a variety of  mechanisms: Interfering with epitope HLA 
binding, reducing T cell receptor recognition or generating 
antagonistic CTL responses.69

Earlier studies revealed a relationship between HLA-B*27 
and HLA-B*57 and the slow progression to AIDS.70 The 
HLA-B*27 recognises a conserved epitope from the p24 
HIV capsid protein and is associated with significantly 
improved survival in HIV infected individuals. These 
individuals may maintain high CD4 counts and low level 
viraemia without antiretroviral therapy.71 Conversely, 
certain other HLA Class I types are associated with rapid 
diseases progression in HIV. HLA-B*35 restricted escape 
mutants may affect the recognition of  CTL by reducing 
both peptide binding and T cell receptor recognition; and 
HLA-B*35 subtypes are associated with rapid HIV disease 
progression.72-74

A large multi-ethnic cohort with HIV 1 controllers 
and progressors found diverse alleles associated with 
virological and immunological control: HLA-B*57:01, 
B*27:05, B*14/C*08:02, B*52 and A*25.74 Furthermore, 
HLA-B*13:0275,76 and B*58:01,77-79 have also been described 
as favourable prognostic factors. The HLA-B*44 and 
HLA-B*57 have been described as favourable factors in 
both the acute and chronic phases of  Sub Saharan Africans 
seroconverters regarding the association of  HLA Class I 
alleles and protection against HIV infection.80

HLA and viral hepatitis B and C infections
About 70% of  the global liver disease is accounted by 
Hepatitis B and C virus infections that are a major public 
health concern.81 The Hepatitis B or C virus infection 
results either an acute self  limited disease or persistent 
infection. Persistent carriage rates, which confer an 
increased risk of  liver complications, failure or end stage 
carcinoma, are 10-20 % in Hepatitis B when compared 
with ~ 80-90 % of  Hepatitis C infections.82

A number of  candidate gene association studies have 
identified HLA specific associations for both Hepatitis 

B and C susceptibility and outcome. An HLA Class II 
heterozygote advantage has been demonstrated for 
clearance of  Hepatitis B virus infection83 and for 
progression to end stage liver disease in Hepatitis C.84

The HLA associations with Hepatitis B and C virus 
infection are largely inconsistent across different ethnic 
groups, and few HLA associations are shared between 
the two infections, which may reflect both methodological 
issues and different disease mechanisms.81 A meta analysis 
demonstrated that HLA-DR*03 and HLA-DR*07 were 
associated with an increased risk of  persistent HBV 
infection in 19 individual case control studies including 9 
Han Chinese cohorts, 3 Korean cohorts, 2 Iranian cohorts 
and 1 cohort each of  Caucasian, Gambian, Taiwanese, Thai 
and Turkish subjects.85 HLA-DRB1*07 is associated with 
viral persistence in both Hepatitis B and C virus infection in 
various European and Asian populations86-88 and also with 
Hepatitis B vaccine failure in multiple populations.81,89-91

HLA-DRB1*1301 (encoding HLA-DR13) appears to be 
consistently associated with Hepatitis B virus clearance 
across a number of  diverse populations.92-95 A genome wide 
association study (GWAS) identified a significant association 
of  chronic Hepatitis B in Asians with 11 SNPs in a region 
including HLA-DPA1 and HLA-DPB1; and subsequent 
analyses revealed risk haplotypes (HLA-DPA*02:02 – 
DPB1*05:01 and HLA-DPA1*02:02 – DPB1*03:01) and 
protective haplotypes (HLA-DPA1*01:03 – DPB1*04:02 
and HLA-DPA1*01:03 – DPB1*04:01) for Hepatitis B 
virus infection.96

HLA and Mycobacterium tuberculosis infection
Tuberculosis (TB) is second only to HIV/AIDS as the 
greatest killer worldwide due to a single infectious agent. 
According to the WHO,97 in 2014, 9.6 million people fell ill 
with TB and 1.5 million died from the disease. Over 95% 
of  TB deaths occur in low and middle income countries. 
It is a leading killer of  HIV positive people causing one 
fourth of  all HIV related deaths. Globally in 2014, an 
estimated 480,000 people developed multidrug resistant TB 
(MDR-TB). TB occurs in every part of  the world. In 2014, 
about 80% of  reported TB cases occurred in 22 countries. 
The frequency and the association of  HLA alleles vary 
among different populations. Thus, the immunological 
mechanism involved in the breakdown of  host resistance 
in these individual remains unclear.

Cell mediated immunity (CMI) is thought to be the major 
component of  host defense against Mycobacterium species; 
consequently, the induction of  optimal Th1 CD4+ cells 
response producing IFN γ is protective immunity against 
Mycobacterial infection especially in the early stages of  
infection. Functional studies using knockout mice,98,99 as 
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well as studies of  human families with rare genetic lesions at 
genes encoding IFN γ or its receptor,100-102 demonstrate the 
crucial role of  this cytokine in defense against tuberculosis 
and atypical mycobacteria. CD 8+ T cells, γδ T cells, NK 
cells and CD1 restricted T cells have all been shown to 
be important IFN γ producers in protection against M. 
tuberculosis.103 In mice, deficiency in MHC Class II impairs 
the response to acute infection, while deficiency in MHC 
Class I has less influence in the acute phase of  infection 
but is crucial during chronic infection.104-106

A strong role for MHC Class II molecules is again borne 
out by the larger number of  studies demonstrating 
association with polymorphisms at HLA-DR and DQ 
compared to classical Class I molecules. Earlier studies 
revealed that HLA-DR2/DR3, DR2/DR4 and DR2/
DR5 are the major heterozygous combinations associated 
with susceptibility to TB.107 The HLA Class II variant, 
DR2 encoded by DRB1*15 and DRB1*16, is associated 
with TB in several populations.108,109 A meta analysis study 
reported that subjects carrying HLA-B13 had a lower risk 
for thoracic TB, whereas other Class I antigens could not 
be related to tuberculosis pathogenesis.110 Furthermore, 
HLA-DRB1*04 and HLA-DQB1*02:01 were associated 
with TB in Chinese patients.111

Thus, several studies of  HLA association with pulmonary 
tuberculosis have been carried out in Chinese,111,112 
Korean,113 Indonesian,114 Indian115-121 and Russian 
patients.122 Of  the numerous Indian studies on HLA 
association with pulmonary tuberculosis, the earlier studies 
focussed on association of  HLA Class I antigens115,116 
and later in family studies in North India118,120 and South 
India117,121 that focussed on HLA Class II antigens. An 
increased frequency of  HLA-DR2 and DQ1 was shown 
to be associated with the susceptibility to pulmonary 
tuberculosis in Indian population. Molecular study has 
revealed that the allele DRB1*1501 of  HLA-DR2 was 
higher compared with DRB1*1502 in North Indian 
patients.117-121,123 Moreover, the TAP2 has been found 
associated with active tuberculosis along with HLA-DR2 
in North Indian pulmonary tuberculosis patients.112

HLA and Mycobacterium leprae infection
Prevalence of  leprosy globally decreased from > 5 million 
cases in the mid 1980s to < 200,000 by 2015 following 
introduction of  multidrug therapy (MDT) and improved 
case detection. The prevalence rate was recorded at 0.31 per 
10,000 populations, marginally less than that of  2014 (0.32 
per 10,000 populations). Globally, however, there are still 
3.78 per 100,000 population new case detection rate, mainly 
in Africa, Americas and Asia.124 The causative agent of  
leprosy, Mycobacterium leprae, is not often a direct killer like 
most of  the cases of  tuberculosis. The common severe 

consequences of  leprosy are deformity and disability. The 
proportion of  new Grade 2 disabilities cases globally is 
6.6%; as reported by WHO.124

Host factors that influence control of  the initial infection 
and the host’s immune response plays a significant 
role in the outcome of  infection with either M. leprae. 
In leprosy, the significance of  the host response to 
infection is manifested by the broad clinical spectrum 
with paucibacillary tuberculoid leprosy (TT) at one pole 
and multibacillary lepromatous leprosy (LL) at the other 
extreme.125 The development of  the clinical spectrum of  the 
disease is related to the degree of  cell mediated immunity 
(CMI) and is influenced by genetic factors.126-128

The TT is characterized by strong CMI, a Th1 CD4+ 
cytokine profile i.e.,Interleukin (IL) 2, IFN γ, very few 
bacteria and localised lesions. The LL is characterized 
by a lack of  CMI Th2 CD4+ responses (IL4 and IL5), a 
strong humoral response, disseminated progressive disease 
and large numbers of  bacteria. The HLA association have 
been studied extensively by several investigators so far.126-133 

Family studies have revealed the presence of  three loci that 
are linked to leprosy. Studies on a South Indian population 
have revealed that two loci are involved in susceptibility 
of  TT on the short arms of  both chromosomes 10 and 
20.134,135 Analysis of  a cohort of  Vietnamese families 
confirmed the linkage of  chromosome 10 and reported 
a further locus on chromosome 6.136 Several studies 
comparing HLA Class I gene frequencies in leprosy cases 
and controls have found associations either with the polar 
forms of  leprosy, or with leprosy itself, however these 
suggested associations have not been replicated as they 
are limited and inconsistent.130,137-142

The association between DR and DQ alleles and different 
clinical subtypes of  leprosy are documented. Several 
studies reported an association of  the HLA-DR2 alleles; 
HLA –DRB1*15, *16, *10 and *12 with susceptibility 
or resistance to leprosy in Brazilian, Vietnamese, South 
Indian, Indonesian, Thai and Argentine populations.143-147 
DRB1*1501 has been associated with LL148,149 whereas 
DRB1*1502 has been associated with TT.150 DQ alleles, 
especially DQw1 have been shown to be associated 
with TT in India,148,123 Korea,141 Thailand,149 and Japan.151 

Importantly, HLA DQ1 is in strong linkage disequilibrium 
with HLA-DR2 in most populations and it has usually been 
difficult to discern whether the primary association is with 
the DR or the DQ variant.

HLA and dengue virus infection
The infection by the Dengue virus has emerged as one 
of  the most important arthropod borne diseases. Human 
infections can be asymptomatic or can manifest as the 
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self  limited classical febrile Dengue Fever (DF), or the 
more severe and life threatening Dengue Haemorrhagic 
Fever (DHF) and Dengue Shock Syndrome (DSS). It is 
a mosquito borne viral disease that has rapidly spread in 
all regions of  WHO in recent years.152 The subsequent 
infections by each of  the four distinct serotypes (DEN-1, 
DEN-2, DEN-3 and DEN-4) increase the risk of  
developing severe dengue. One recent estimate indicates 
390 million dengue infections per year, of  which 96 million 
(67-136 million) manifest clinically (with any severity of  
disease).153 Moreover, the other study estimates the risk 
of  dengue infections about 3.9 billion people in 128 
countries.154

In 2010, 2013 and 2015; nearly 2.4 million cases were 
reported annually by the Member States in 3 WHO regions. 
An estimated 500,000 people with severe dengue require 
hospitalization each year with a large proportion of  children. 
About 2.5% of  those affected die.152 Several studies155-163 

have been conducted about the role of  HLA alleles or non 
HLA alleles in determining resistance, susceptibility or 
the severity of  dengue viral infection, yet only superficial 
efforts have been made. Thus, a need for detailed genetic 
studies in different ethnic groups in different countries on 
a large number of  patients is required.

HLA and malaria
Malaria infection caused by Plasmodium species, is one of  the 
worst scourges of  both mankind and wildlife representing 
a research agenda with global concerns for human health 
and conservation.164,165 MHC mediated resistance to malaria 
can be achieved via two major functional pathways. The 
antigen presentation of  MHC Class I proteins, by triggering 
cytotoxic T cells against intracellular parasites, may play 
an important role during the liver stage infection, while 
Class II molecules can mediate the clearance of  parasitized 
erythrocytes from the bloodstream through the stimulation 
of  helper T cells.166

The first convincing association study was carried out in 
West Africans where the frequent HLA-Bw53 allele and 
the special DRB1*1302-DQB1*0501 haplotype were 
associated with reduced susceptibility to severe malaria.166 
By the turn of  the 21st century, some HLA-DR alleles had 
been associated with an increased antibody response to 
Nt47 (p126 aminoterminal portion),167 to apical membrane 
antigen–1 (AMA-1)168 of  Plasmodium falciparum and to 
the VK247 CSP repetition of  Plasmodium vivax.169 The 
mechanistic link between malaria and the MHC seems 
evident from some population studies of  humans and 
birds, in which each studied individual variation in the 
prevalence of  certain alleles was associated with tolerance 
or susceptibility of  infection.166,170-175 The majority of  
studies investigating the influence of  HLA alleles on the 

immune response to malaria have been conducted with 
P. falciparum antigens because of  the higher mortality 
attributed to malaria caused by this parasite. However, these 
findings were not broadly generalized, and the relationships 
remained applicable to the specific locality where the data 
came from as ethnic and/or geographic variations play a 
major role in this correlation. For example, in a Gambian 
population, DRB1*13:02 and B*53:01 were associated with 
reduced susceptibility to severe malaria,166 while similar 
resistance roles were not transparent within the Dogon 
ethnic group in Mali.171

HLA and leishmaniasis
Leishmaniasis, a neglected tropical disease, prevalent 
in developing countries with 90% of  them in Asia 
(Bangladesh, India and Nepal), Sudan, Ethiopia and 
Brazil.176 Due to advances in science and technology, there 
is evidence to support the fact that the genetic background 
of  the host and the immune response play an important 
role in the outcome of  the leishmaniasis disease.176-186

One of  the first studies assessing the potential association 
between HLA and cutaneous leishmaniasis involving 
serological methods was under taken in France, with 
Leishmania guyanensis.180 The study revealed the association 
of  a low HLA-Cw7 frequency with pathogenesis of  
cutaneous leishmaniasis.

A serological study in Brazil involving L. braziliensis found 
that allele HLA-DQw3 was associated with risk of  infection 
and HLA-DR2 was associated with protection against 
mucocutaneous leishmaniasis.183

However, there is no association of  HLA-DR2 in any group 
study of  Southern Brazilian population by Ribas-Silva 
et al186 This study also showed a trend towards susceptibility 
to cutaneous leishmaniasis for alleles HLA-DRB1*13, 
HLA-B*35 and HLA-B*44. The alleles HLA-B*27, 
HLA-B*49 and HLA-B*52 tended towards susceptibility, 
recurrent and reinfection to mucocutaneous leishmaniasis 
respectively.

The HLA-B*45 alleles tended to provide protection against 
cutaneous form of  American cutaneous leishmaniasis.183 
The study of  Singh T et al176 revealed DRB1*13/14 and 
DRB1*15/16 as risk and protective alleles respectively in 
visceral leishmaniasis.

CONCLUSION

There is increasing evidence that HLAs are subject to 
ongoing selection pressures by infectious pathogens, 
supporting the theory that natural selection by infectious 
pathogens plays the central role in maintaining MHC 
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polymorphism. Even though, further genome wide 
linkage studies in different populations will be required to 
determine the extent of  genetic heterogeneity that exists for 
susceptibility or resistance to the infections. Furthermore, 
the studied population is highly miscegenated and therefore, 
results from studies undertaken in a single region should 
not be generalized to the whole world. The MHC alleles 
could be in linkage disequilibrium with other relevant genes 
involved in susceptibility or resistance to pathogens. Such 
knowledge shall contribute towards future prophylactic 
and therapeutic interventions and lastly, because of  space 
constraints; only selected work has been cited.
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